From ed46e1a38ae2de97b55c1843bad8b813bd4936e3 Mon Sep 17 00:00:00 2001 From: mindchasers Date: Sun, 7 Jul 2019 17:58:07 -0400 Subject: initial commit of private island ARM test suite --- drivers/fsl_dspi_edma.c | 1446 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1446 insertions(+) create mode 100644 drivers/fsl_dspi_edma.c (limited to 'drivers/fsl_dspi_edma.c') diff --git a/drivers/fsl_dspi_edma.c b/drivers/fsl_dspi_edma.c new file mode 100644 index 0000000..bbd560e --- /dev/null +++ b/drivers/fsl_dspi_edma.c @@ -0,0 +1,1446 @@ +/* + * The Clear BSD License + * Copyright (c) 2015, Freescale Semiconductor, Inc. + * Copyright 2016-2017 NXP + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted (subject to the limitations in the disclaimer below) provided + * that the following conditions are met: + * + * o Redistributions of source code must retain the above copyright notice, this list + * of conditions and the following disclaimer. + * + * o Redistributions in binary form must reproduce the above copyright notice, this + * list of conditions and the following disclaimer in the documentation and/or + * other materials provided with the distribution. + * + * o Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from this + * software without specific prior written permission. + * + * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "fsl_dspi_edma.h" + +/*********************************************************************************************************************** +* Definitions +***********************************************************************************************************************/ + +/* Component ID definition, used by tools. */ +#ifndef FSL_COMPONENT_ID +#define FSL_COMPONENT_ID "platform.drivers.dspi_edma" +#endif + +/*! +* @brief Structure definition for dspi_master_edma_private_handle_t. The structure is private. +*/ +typedef struct _dspi_master_edma_private_handle +{ + SPI_Type *base; /*!< DSPI peripheral base address. */ + dspi_master_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */ +} dspi_master_edma_private_handle_t; + +/*! +* @brief Structure definition for dspi_slave_edma_private_handle_t. The structure is private. +*/ +typedef struct _dspi_slave_edma_private_handle +{ + SPI_Type *base; /*!< DSPI peripheral base address. */ + dspi_slave_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */ +} dspi_slave_edma_private_handle_t; + +/*********************************************************************************************************************** +* Prototypes +***********************************************************************************************************************/ +/*! +* @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA. +* This is not a public API. +*/ +static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle, + void *g_dspiEdmaPrivateHandle, + bool transferDone, + uint32_t tcds); + +/*! +* @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA. +* This is not a public API. +*/ +static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle, + void *g_dspiEdmaPrivateHandle, + bool transferDone, + uint32_t tcds); + +/*********************************************************************************************************************** +* Variables +***********************************************************************************************************************/ + +/*! @brief Pointers to dspi edma handles for each instance. */ +static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT]; +static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT]; + +/*********************************************************************************************************************** +* Code +***********************************************************************************************************************/ + +void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base, + dspi_master_edma_handle_t *handle, + dspi_master_edma_transfer_callback_t callback, + void *userData, + edma_handle_t *edmaRxRegToRxDataHandle, + edma_handle_t *edmaTxDataToIntermediaryHandle, + edma_handle_t *edmaIntermediaryToTxRegHandle) +{ + assert(handle); + assert(edmaRxRegToRxDataHandle); +#if (!(defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET)) + assert(edmaTxDataToIntermediaryHandle); +#endif + assert(edmaIntermediaryToTxRegHandle); + + /* Zero the handle. */ + memset(handle, 0, sizeof(*handle)); + + uint32_t instance = DSPI_GetInstance(base); + + s_dspiMasterEdmaPrivateHandle[instance].base = base; + s_dspiMasterEdmaPrivateHandle[instance].handle = handle; + + handle->callback = callback; + handle->userData = userData; + + handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle; + handle->edmaTxDataToIntermediaryHandle = edmaTxDataToIntermediaryHandle; + handle->edmaIntermediaryToTxRegHandle = edmaIntermediaryToTxRegHandle; +} + +status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer) +{ + assert(handle); + assert(transfer); + + /* If the transfer count is zero, then return immediately.*/ + if (transfer->dataSize == 0) + { + return kStatus_InvalidArgument; + } + + /* If both send buffer and receive buffer is null */ + if ((!(transfer->txData)) && (!(transfer->rxData))) + { + return kStatus_InvalidArgument; + } + + /* Check that we're not busy.*/ + if (handle->state == kDSPI_Busy) + { + return kStatus_DSPI_Busy; + } + + handle->state = kDSPI_Busy; + + uint32_t instance = DSPI_GetInstance(base); + uint16_t wordToSend = 0; + uint8_t dummyData = g_dspiDummyData[DSPI_GetInstance(base)]; + uint8_t dataAlreadyFed = 0; + uint8_t dataFedMax = 2; + + uint32_t rxAddr = DSPI_GetRxRegisterAddress(base); + uint32_t txAddr = DSPI_MasterGetTxRegisterAddress(base); + + edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU)); + + edma_transfer_config_t transferConfigA; + edma_transfer_config_t transferConfigB; + + handle->txBuffIfNull = ((uint32_t)dummyData << 8) | dummyData; + + dspi_command_data_config_t commandStruct; + DSPI_StopTransfer(base); + DSPI_FlushFifo(base, true, true); + DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag); + + commandStruct.whichPcs = + (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT)); + commandStruct.isEndOfQueue = false; + commandStruct.clearTransferCount = false; + commandStruct.whichCtar = + (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT); + commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous); + handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct)); + + commandStruct.isEndOfQueue = true; + commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer); + handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct)); + + handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1; + + if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK)) + { + handle->fifoSize = 1; + } + else + { + handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base); + } + handle->txData = transfer->txData; + handle->rxData = transfer->rxData; + handle->remainingSendByteCount = transfer->dataSize; + handle->remainingReceiveByteCount = transfer->dataSize; + handle->totalByteCount = transfer->dataSize; + + /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer + * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame + */ + uint32_t limited_size = 0; + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + limited_size = 32767u; + } + else + { + limited_size = 511u; + } + + if (handle->bitsPerFrame > 8) + { + if (transfer->dataSize > (limited_size << 1u)) + { + handle->state = kDSPI_Idle; + return kStatus_DSPI_OutOfRange; + } + } + else + { + if (transfer->dataSize > limited_size) + { + handle->state = kDSPI_Idle; + return kStatus_DSPI_OutOfRange; + } + } + + /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */ + if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1)) + { + handle->state = kDSPI_Idle; + return kStatus_InvalidArgument; + } + + DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + + EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback, + &s_dspiMasterEdmaPrivateHandle[instance]); + + /* + (1)For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C. + channel_A minor link to channel_B , channel_B minor link to channel_C. + + Already pushed 1 or 2 data in SPI_PUSHR , then start the DMA tansfer. + channel_A:SPI_POPR to rxData, + channel_B:next txData to handle->command (low 16 bits), + channel_C:handle->command (32 bits) to SPI_PUSHR, and use the scatter/gather to transfer the last data + (handle->lastCommand to SPI_PUSHR). + + (2)For DSPI instances with separate RX and TX DMA requests: + Rx DMA request -> channel_A + Tx DMA request -> channel_C -> channel_B . + channel_C major link to channel_B. + So need prepare the first data in "intermediary" before the DMA + transfer and then channel_B is used to prepare the next data to "intermediary" + + channel_A:SPI_POPR to rxData, + channel_C: handle->command (32 bits) to SPI_PUSHR, + channel_B: next txData to handle->command (low 16 bits), and use the scatter/gather to prepare the last data + (handle->lastCommand to handle->Command). + */ + + /*If dspi has separate dma request , prepare the first data in "intermediary" . + else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/ + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + /* For DSPI instances with separate RX/TX DMA requests, we'll use the TX DMA request to + * trigger the TX DMA channel and RX DMA request to trigger the RX DMA channel + */ + + /*Prepare the firt data*/ + if (handle->bitsPerFrame > 8) + { + /* If it's the last word */ + if (handle->remainingSendByteCount <= 2) + { + if (handle->txData) + { + wordToSend = *(handle->txData); + ++handle->txData; /* increment to next data byte */ + wordToSend |= (unsigned)(*(handle->txData)) << 8U; + } + else + { + wordToSend = ((uint32_t)dummyData << 8) | dummyData; + } + handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; + handle->command = handle->lastCommand; + } + else /* For all words except the last word , frame > 8bits */ + { + if (handle->txData) + { + wordToSend = *(handle->txData); + ++handle->txData; /* increment to next data byte */ + wordToSend |= (unsigned)(*(handle->txData)) << 8U; + ++handle->txData; /* increment to next data byte */ + } + else + { + wordToSend = ((uint32_t)dummyData << 8) | dummyData; + } + handle->command = (handle->command & 0xffff0000U) | wordToSend; + } + } + else /* Optimized for bits/frame less than or equal to one byte. */ + { + if (handle->txData) + { + wordToSend = *(handle->txData); + ++handle->txData; /* increment to next data word*/ + } + else + { + wordToSend = dummyData; + } + + if (handle->remainingSendByteCount == 1) + { + handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; + handle->command = handle->lastCommand; + } + else + { + handle->command = (handle->command & 0xffff0000U) | wordToSend; + } + } + } + + else /*dspi has shared dma request*/ + { + /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to + * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel. + */ + + /* If bits/frame is greater than one byte */ + if (handle->bitsPerFrame > 8) + { + while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) + { + if (handle->remainingSendByteCount <= 2) + { + if (handle->txData) + { + wordToSend = *(handle->txData); + ++handle->txData; + wordToSend |= (unsigned)(*(handle->txData)) << 8U; + } + else + { + wordToSend = ((uint32_t)dummyData << 8) | dummyData; + } + handle->remainingSendByteCount = 0; + base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend; + } + /* For all words except the last word */ + else + { + if (handle->txData) + { + wordToSend = *(handle->txData); + ++handle->txData; + wordToSend |= (unsigned)(*(handle->txData)) << 8U; + ++handle->txData; + } + else + { + wordToSend = ((uint32_t)dummyData << 8) | dummyData; + } + handle->remainingSendByteCount -= 2; + base->PUSHR = (handle->command & 0xffff0000U) | wordToSend; + } + + /* Try to clear the TFFF; if the TX FIFO is full this will clear */ + DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); + + dataAlreadyFed += 2; + + /* exit loop if send count is zero, else update local variables for next loop */ + if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2))) + { + break; + } + } /* End of TX FIFO fill while loop */ + } + else /* Optimized for bits/frame less than or equal to one byte. */ + { + while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) + { + if (handle->txData) + { + wordToSend = *(handle->txData); + ++handle->txData; + } + else + { + wordToSend = dummyData; + } + + if (handle->remainingSendByteCount == 1) + { + base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend; + } + else + { + base->PUSHR = (handle->command & 0xffff0000U) | wordToSend; + } + + /* Try to clear the TFFF; if the TX FIFO is full this will clear */ + DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); + + --handle->remainingSendByteCount; + + dataAlreadyFed++; + + /* exit loop if send count is zero, else update local variables for next loop */ + if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax)) + { + break; + } + } /* End of TX FIFO fill while loop */ + } + } + + /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer(rxData)*/ + EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); + + transferConfigA.srcAddr = (uint32_t)rxAddr; + transferConfigA.srcOffset = 0; + + if (handle->rxData) + { + transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]); + transferConfigA.destOffset = 1; + } + else + { + transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull); + transferConfigA.destOffset = 0; + } + + transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes; + + if (handle->bitsPerFrame <= 8) + { + transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes; + transferConfigA.minorLoopBytes = 1; + transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount; + } + else + { + transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes; + transferConfigA.minorLoopBytes = 2; + transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2; + } + + /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */ + handle->nbytes = transferConfigA.minorLoopBytes; + + EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + &transferConfigA, NULL); + EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + kEDMA_MajorInterruptEnable); + + /*Calculate the last data : handle->lastCommand*/ + if (((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) || + ((((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) || + ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8))) && + (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))) + { + if (handle->txData) + { + uint32_t bufferIndex = 0; + + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + if (handle->bitsPerFrame <= 8) + { + bufferIndex = handle->remainingSendByteCount - 1; + } + else + { + bufferIndex = handle->remainingSendByteCount - 2; + } + } + else + { + bufferIndex = handle->remainingSendByteCount; + } + + if (handle->bitsPerFrame <= 8) + { + handle->lastCommand = (handle->lastCommand & 0xffff0000U) | handle->txData[bufferIndex - 1]; + } + else + { + handle->lastCommand = (handle->lastCommand & 0xffff0000U) | + ((uint32_t)handle->txData[bufferIndex - 1] << 8) | + handle->txData[bufferIndex - 2]; + } + } + else + { + if (handle->bitsPerFrame <= 8) + { + wordToSend = dummyData; + } + else + { + wordToSend = ((uint32_t)dummyData << 8) | dummyData; + } + handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; + } + } + +/* The feature of GASKET is that the SPI supports 8-bit or 16-bit writes to the PUSH TX FIFO, + * allowing a single write to the command word followed by multiple writes to the transmit word. + * The TX FIFO will save the last command word written, and convert a 8-bit/16-bit write to the + * transmit word into a 32-bit write that pushes both the command word and transmit word into + * the TX FIFO (PUSH TX FIFO Register In Master Mode) + * So, if this feature is supported, we can use use one channel to carry the receive data from + * receive regsiter to user data buffer, use the other channel to carry the data from user data buffer + * to transmit register,and use the scatter/gather function to prepare the last data. + * That is to say, if GASKET feature is supported, we can use only two channels for tansferring data. + */ +#if defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET + /* For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data + * (handle->lastCommand) to PUSHR register. + */ + + EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel); + + if ((1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) || + ((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))) + { + transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand); + transferConfigB.destAddr = (uint32_t)txAddr; + transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes; + transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes; + transferConfigB.srcOffset = 0; + transferConfigB.destOffset = 0; + transferConfigB.minorLoopBytes = 4; + transferConfigB.majorLoopCounts = 1; + + EDMA_TcdReset(softwareTCD); + EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL); + } + + /*User_Send_Buffer(txData) to PUSHR register. */ + if (((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame <= 8)) || + ((handle->remainingSendByteCount > 4) && (handle->bitsPerFrame > 8))) + { + if (handle->txData) + { + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + /* For DSPI with separate RX and TX DMA requests, one frame data has been carry + * to handle->command, so need to reduce the pointer of txData. + */ + transferConfigB.srcAddr = + (uint32_t)((uint8_t *)(handle->txData) - ((handle->bitsPerFrame <= 8) ? (1U) : (2U))); + transferConfigB.srcOffset = 1; + } + else + { + /* For DSPI with shared RX and TX DMA requests, one or two frame data have been carry + * to PUSHR register, so no need to change the pointer of txData. + */ + transferConfigB.srcAddr = (uint32_t)((uint8_t *)(handle->txData)); + transferConfigB.srcOffset = 1; + } + } + else + { + transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull); + transferConfigB.srcOffset = 0; + } + + transferConfigB.destAddr = (uint32_t)txAddr; + transferConfigB.destOffset = 0; + + transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes; + + if (handle->bitsPerFrame <= 8) + { + transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes; + transferConfigB.minorLoopBytes = 1; + + transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 1; + } + else + { + transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes; + transferConfigB.minorLoopBytes = 2; + transferConfigB.majorLoopCounts = (handle->remainingSendByteCount / 2) - 1; + } + + EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, softwareTCD); + } + /* If only one word to transmit, only carry the lastcommand. */ + else + { + EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, NULL); + } + + /*Start the EDMA channel_A , channel_C. */ + EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); + EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle); + + /* Set the channel link. + * For DSPI instances with shared TX and RX DMA requests, setup channel minor link, first receive data from the + * receive register, and then carry transmit data to PUSHER register. + * For DSPI instance with separate TX and RX DMA requests, there is no need to set up channel link. + */ + if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + /*Set channel priority*/ + uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel; + uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel; + uint8_t t = 0; + + if (channelPriorityLow > channelPriorityHigh) + { + t = channelPriorityLow; + channelPriorityLow = channelPriorityHigh; + channelPriorityHigh = t; + } + + edma_channel_Preemption_config_t preemption_config_t; + preemption_config_t.enableChannelPreemption = true; + preemption_config_t.enablePreemptAbility = true; + preemption_config_t.channelPriority = channelPriorityLow; + + EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + &preemption_config_t); + + preemption_config_t.channelPriority = channelPriorityHigh; + EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t); + /*if there is Rx DMA request , carry the 32bits data (handle->command) to user data first , then link to + channelC to carry the next data to PUSHER register.(txData to PUSHER) */ + if (handle->remainingSendByteCount > 0) + { + EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + kEDMA_MinorLink, handle->edmaIntermediaryToTxRegHandle->channel); + } + } + + DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + + /* Setup control info to PUSHER register. */ + *((uint16_t *)&(base->PUSHR) + 1) = (handle->command >> 16U); +#else + + /***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should + write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the + SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */ + + EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel); + + /*For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data + * (handle->lastCommand) to handle->Command*/ + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand); + transferConfigB.destAddr = (uint32_t) & (handle->command); + transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes; + transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes; + transferConfigB.srcOffset = 0; + transferConfigB.destOffset = 0; + transferConfigB.minorLoopBytes = 4; + transferConfigB.majorLoopCounts = 1; + + EDMA_TcdReset(softwareTCD); + EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL); + } + + /*User_Send_Buffer(txData) to intermediary(handle->command)*/ + if (((((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame <= 8)) || + ((handle->remainingSendByteCount > 4) && (handle->bitsPerFrame > 8))) && + (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) || + (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) + { + if (handle->txData) + { + transferConfigB.srcAddr = (uint32_t)(handle->txData); + transferConfigB.srcOffset = 1; + } + else + { + transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull); + transferConfigB.srcOffset = 0; + } + + transferConfigB.destAddr = (uint32_t)(&handle->command); + transferConfigB.destOffset = 0; + + transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes; + + if (handle->bitsPerFrame <= 8) + { + transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes; + transferConfigB.minorLoopBytes = 1; + + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 2; + } + else + { + /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is + majorlink , the majorlink would not trigger the channel_C*/ + transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1; + } + } + else + { + transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes; + transferConfigB.minorLoopBytes = 2; + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 - 2; + } + else + { + /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is + * majorlink*/ + transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 + 1; + } + } + + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, + handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, softwareTCD); + EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, false); + } + else + { + EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, + handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL); + } + } + else + { + EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, + handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL); + } + + /***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to + handle the last data */ + + edma_transfer_config_t transferConfigC; + EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel); + + /*For DSPI instances with shared RX/TX DMA requests: use the scatter/gather to prepare the last data + * (handle->lastCommand) to SPI_PUSHR*/ + if (((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (handle->remainingSendByteCount > 0))) + { + transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand); + transferConfigC.destAddr = (uint32_t)txAddr; + transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes; + transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes; + transferConfigC.srcOffset = 0; + transferConfigC.destOffset = 0; + transferConfigC.minorLoopBytes = 4; + transferConfigC.majorLoopCounts = 1; + + EDMA_TcdReset(softwareTCD); + EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigC, NULL); + } + + if (((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) || + ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8)) || + (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) + { + transferConfigC.srcAddr = (uint32_t)(&(handle->command)); + transferConfigC.destAddr = (uint32_t)txAddr; + + transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes; + transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes; + transferConfigC.srcOffset = 0; + transferConfigC.destOffset = 0; + transferConfigC.minorLoopBytes = 4; + if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + if (handle->bitsPerFrame <= 8) + { + transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1; + } + else + { + transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2 - 1; + } + + EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, softwareTCD); + } + else + { + transferConfigC.majorLoopCounts = 1; + + EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL); + } + + EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, false); + } + else + { + EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL); + } + + /*Start the EDMA channel_A , channel_B , channel_C transfer*/ + EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); + EDMA_StartTransfer(handle->edmaTxDataToIntermediaryHandle); + EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle); + + /*Set channel priority*/ + uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel; + uint8_t channelPriorityMid = handle->edmaTxDataToIntermediaryHandle->channel; + uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel; + uint8_t t = 0; + if (channelPriorityLow > channelPriorityMid) + { + t = channelPriorityLow; + channelPriorityLow = channelPriorityMid; + channelPriorityMid = t; + } + + if (channelPriorityLow > channelPriorityHigh) + { + t = channelPriorityLow; + channelPriorityLow = channelPriorityHigh; + channelPriorityHigh = t; + } + + if (channelPriorityMid > channelPriorityHigh) + { + t = channelPriorityMid; + channelPriorityMid = channelPriorityHigh; + channelPriorityHigh = t; + } + edma_channel_Preemption_config_t preemption_config_t; + preemption_config_t.enableChannelPreemption = true; + preemption_config_t.enablePreemptAbility = true; + preemption_config_t.channelPriority = channelPriorityLow; + + if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + &preemption_config_t); + + preemption_config_t.channelPriority = channelPriorityMid; + EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base, + handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t); + + preemption_config_t.channelPriority = channelPriorityHigh; + EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t); + } + else + { + EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t); + + preemption_config_t.channelPriority = channelPriorityMid; + EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base, + handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t); + + preemption_config_t.channelPriority = channelPriorityHigh; + EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + &preemption_config_t); + } + + /*Set the channel link.*/ + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + /*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB + to prepare the next 32bits data (txData to handle->command) */ + if (handle->remainingSendByteCount > 1) + { + EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base, + handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MajorLink, + handle->edmaTxDataToIntermediaryHandle->channel); + } + + DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + } + else + { + if (handle->remainingSendByteCount > 0) + { + EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + kEDMA_MinorLink, handle->edmaTxDataToIntermediaryHandle->channel); + + EDMA_SetChannelLink(handle->edmaTxDataToIntermediaryHandle->base, + handle->edmaTxDataToIntermediaryHandle->channel, kEDMA_MinorLink, + handle->edmaIntermediaryToTxRegHandle->channel); + } + + DSPI_EnableDMA(base, kDSPI_RxDmaEnable); + } +#endif + DSPI_StartTransfer(base); + + return kStatus_Success; +} + +status_t DSPI_MasterHalfDuplexTransferEDMA(SPI_Type *base, + dspi_master_edma_handle_t *handle, + dspi_half_duplex_transfer_t *xfer) +{ + assert(xfer); + assert(handle); + dspi_transfer_t tempXfer = {0}; + status_t status; + + if (xfer->isTransmitFirst) + { + tempXfer.txData = xfer->txData; + tempXfer.rxData = NULL; + tempXfer.dataSize = xfer->txDataSize; + } + else + { + tempXfer.txData = NULL; + tempXfer.rxData = xfer->rxData; + tempXfer.dataSize = xfer->rxDataSize; + } + /* If the pcs pin keep assert between transmit and receive. */ + if (xfer->isPcsAssertInTransfer) + { + tempXfer.configFlags = (xfer->configFlags) | kDSPI_MasterActiveAfterTransfer; + } + else + { + tempXfer.configFlags = (xfer->configFlags) & (uint32_t)(~kDSPI_MasterActiveAfterTransfer); + } + + status = DSPI_MasterTransferBlocking(base, &tempXfer); + if (status != kStatus_Success) + { + return status; + } + + if (xfer->isTransmitFirst) + { + tempXfer.txData = NULL; + tempXfer.rxData = xfer->rxData; + tempXfer.dataSize = xfer->rxDataSize; + } + else + { + tempXfer.txData = xfer->txData; + tempXfer.rxData = NULL; + tempXfer.dataSize = xfer->txDataSize; + } + tempXfer.configFlags = xfer->configFlags; + + status = DSPI_MasterTransferEDMA(base, handle, &tempXfer); + + return status; +} +static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle, + void *g_dspiEdmaPrivateHandle, + bool transferDone, + uint32_t tcds) +{ + assert(edmaHandle); + assert(g_dspiEdmaPrivateHandle); + + dspi_master_edma_private_handle_t *dspiEdmaPrivateHandle; + + dspiEdmaPrivateHandle = (dspi_master_edma_private_handle_t *)g_dspiEdmaPrivateHandle; + + DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + + dspiEdmaPrivateHandle->handle->state = kDSPI_Idle; + + if (dspiEdmaPrivateHandle->handle->callback) + { + dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle, + kStatus_Success, dspiEdmaPrivateHandle->handle->userData); + } +} + +void DSPI_MasterTransferAbortEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle) +{ + assert(handle); + + DSPI_StopTransfer(base); + + DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + + EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle); + EDMA_AbortTransfer(handle->edmaTxDataToIntermediaryHandle); + EDMA_AbortTransfer(handle->edmaIntermediaryToTxRegHandle); + + handle->state = kDSPI_Idle; +} + +status_t DSPI_MasterTransferGetCountEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, size_t *count) +{ + assert(handle); + + if (!count) + { + return kStatus_InvalidArgument; + } + + /* Catch when there is not an active transfer. */ + if (handle->state != kDSPI_Busy) + { + *count = 0; + return kStatus_NoTransferInProgress; + } + + size_t bytes; + + bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base, + handle->edmaRxRegToRxDataHandle->channel); + + *count = handle->totalByteCount - bytes; + + return kStatus_Success; +} + +void DSPI_SlaveTransferCreateHandleEDMA(SPI_Type *base, + dspi_slave_edma_handle_t *handle, + dspi_slave_edma_transfer_callback_t callback, + void *userData, + edma_handle_t *edmaRxRegToRxDataHandle, + edma_handle_t *edmaTxDataToTxRegHandle) +{ + assert(handle); + assert(edmaRxRegToRxDataHandle); + assert(edmaTxDataToTxRegHandle); + + /* Zero the handle. */ + memset(handle, 0, sizeof(*handle)); + + uint32_t instance = DSPI_GetInstance(base); + + s_dspiSlaveEdmaPrivateHandle[instance].base = base; + s_dspiSlaveEdmaPrivateHandle[instance].handle = handle; + + handle->callback = callback; + handle->userData = userData; + + handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle; + handle->edmaTxDataToTxRegHandle = edmaTxDataToTxRegHandle; +} + +status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_transfer_t *transfer) +{ + assert(handle); + assert(transfer); + + /* If send/receive length is zero */ + if (transfer->dataSize == 0) + { + return kStatus_InvalidArgument; + } + + /* If both send buffer and receive buffer is null */ + if ((!(transfer->txData)) && (!(transfer->rxData))) + { + return kStatus_InvalidArgument; + } + + /* Check that we're not busy.*/ + if (handle->state == kDSPI_Busy) + { + return kStatus_DSPI_Busy; + } + + handle->state = kDSPI_Busy; + + uint32_t instance = DSPI_GetInstance(base); + uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT; + handle->bitsPerFrame = + (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1; + + /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer + * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame + */ + uint32_t limited_size = 0; + if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + limited_size = 32767u; + } + else + { + limited_size = 511u; + } + + if (handle->bitsPerFrame > 8) + { + if (transfer->dataSize > (limited_size << 1u)) + { + handle->state = kDSPI_Idle; + return kStatus_DSPI_OutOfRange; + } + } + else + { + if (transfer->dataSize > limited_size) + { + handle->state = kDSPI_Idle; + return kStatus_DSPI_OutOfRange; + } + } + + /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */ + if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1)) + { + handle->state = kDSPI_Idle; + return kStatus_InvalidArgument; + } + + EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]); + + /* Store transfer information */ + handle->txData = transfer->txData; + handle->rxData = transfer->rxData; + handle->remainingSendByteCount = transfer->dataSize; + handle->remainingReceiveByteCount = transfer->dataSize; + handle->totalByteCount = transfer->dataSize; + + uint16_t wordToSend = 0; + uint8_t dummyData = g_dspiDummyData[DSPI_GetInstance(base)]; + uint8_t dataAlreadyFed = 0; + uint8_t dataFedMax = 2; + + uint32_t rxAddr = DSPI_GetRxRegisterAddress(base); + uint32_t txAddr = DSPI_SlaveGetTxRegisterAddress(base); + + edma_transfer_config_t transferConfigA; + edma_transfer_config_t transferConfigC; + + DSPI_StopTransfer(base); + + DSPI_FlushFifo(base, true, true); + DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag); + + DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + + DSPI_StartTransfer(base); + + /*if dspi has separate dma request , need not prepare data first . + else (dspi has shared dma request) , send first 2 data into fifo if there is fifo or send first 1 data to + slaveGetTxRegister if there is no fifo*/ + if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to + * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel. + */ + /* If bits/frame is greater than one byte */ + if (handle->bitsPerFrame > 8) + { + while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) + { + if (handle->txData) + { + wordToSend = *(handle->txData); + ++handle->txData; /* Increment to next data byte */ + + wordToSend |= (unsigned)(*(handle->txData)) << 8U; + ++handle->txData; /* Increment to next data byte */ + } + else + { + wordToSend = ((uint32_t)dummyData << 8) | dummyData; + } + handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */ + base->PUSHR_SLAVE = wordToSend; + + /* Try to clear the TFFF; if the TX FIFO is full this will clear */ + DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); + + dataAlreadyFed += 2; + + /* Exit loop if send count is zero, else update local variables for next loop */ + if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2))) + { + break; + } + } /* End of TX FIFO fill while loop */ + } + else /* Optimized for bits/frame less than or equal to one byte. */ + { + while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) + { + if (handle->txData) + { + wordToSend = *(handle->txData); + /* Increment to next data word*/ + ++handle->txData; + } + else + { + wordToSend = dummyData; + } + + base->PUSHR_SLAVE = wordToSend; + + /* Try to clear the TFFF; if the TX FIFO is full this will clear */ + DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); + /* Decrement remainingSendByteCount*/ + --handle->remainingSendByteCount; + + dataAlreadyFed++; + + /* Exit loop if send count is zero, else update local variables for next loop */ + if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax)) + { + break; + } + } /* End of TX FIFO fill while loop */ + } + } + + /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/ + if (handle->remainingReceiveByteCount > 0) + { + EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); + + transferConfigA.srcAddr = (uint32_t)rxAddr; + transferConfigA.srcOffset = 0; + + if (handle->rxData) + { + transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]); + transferConfigA.destOffset = 1; + } + else + { + transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull); + transferConfigA.destOffset = 0; + } + + transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes; + + if (handle->bitsPerFrame <= 8) + { + transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes; + transferConfigA.minorLoopBytes = 1; + transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount; + } + else + { + transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes; + transferConfigA.minorLoopBytes = 2; + transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2; + } + + /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */ + handle->nbytes = transferConfigA.minorLoopBytes; + + EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + &transferConfigA, NULL); + EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + kEDMA_MajorInterruptEnable); + } + + if (handle->remainingSendByteCount > 0) + { + /***channel_C *** used for carry the data from User_Send_Buffer to Tx_Data_Register(PUSHR_SLAVE)*/ + EDMA_ResetChannel(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel); + + transferConfigC.destAddr = (uint32_t)txAddr; + transferConfigC.destOffset = 0; + + if (handle->txData) + { + transferConfigC.srcAddr = (uint32_t)(&(handle->txData[0])); + transferConfigC.srcOffset = 1; + } + else + { + transferConfigC.srcAddr = (uint32_t)(&handle->txBuffIfNull); + transferConfigC.srcOffset = 0; + if (handle->bitsPerFrame <= 8) + { + handle->txBuffIfNull = dummyData; + } + else + { + handle->txBuffIfNull = ((uint32_t)dummyData << 8) | dummyData; + } + } + + transferConfigC.srcTransferSize = kEDMA_TransferSize1Bytes; + + if (handle->bitsPerFrame <= 8) + { + transferConfigC.destTransferSize = kEDMA_TransferSize1Bytes; + transferConfigC.minorLoopBytes = 1; + transferConfigC.majorLoopCounts = handle->remainingSendByteCount; + } + else + { + transferConfigC.destTransferSize = kEDMA_TransferSize2Bytes; + transferConfigC.minorLoopBytes = 2; + transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2; + } + + EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, + &transferConfigC, NULL); + + EDMA_StartTransfer(handle->edmaTxDataToTxRegHandle); + } + + EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); + + /*Set channel priority*/ + uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel; + uint8_t channelPriorityHigh = handle->edmaTxDataToTxRegHandle->channel; + uint8_t t = 0; + + if (channelPriorityLow > channelPriorityHigh) + { + t = channelPriorityLow; + channelPriorityLow = channelPriorityHigh; + channelPriorityHigh = t; + } + + edma_channel_Preemption_config_t preemption_config_t; + preemption_config_t.enableChannelPreemption = true; + preemption_config_t.enablePreemptAbility = true; + preemption_config_t.channelPriority = channelPriorityLow; + + if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + &preemption_config_t); + + preemption_config_t.channelPriority = channelPriorityHigh; + EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, + &preemption_config_t); + } + else + { + EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, + &preemption_config_t); + + preemption_config_t.channelPriority = channelPriorityHigh; + EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + &preemption_config_t); + } + + /*Set the channel link. + For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_C. + For DSPI instances with separate RX and TX DMA requests: + Rx DMA request -> channel_A + Tx DMA request -> channel_C */ + if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) + { + if (handle->remainingSendByteCount > 0) + { + EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, + kEDMA_MinorLink, handle->edmaTxDataToTxRegHandle->channel); + } + DSPI_EnableDMA(base, kDSPI_RxDmaEnable); + } + else + { + DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + } + + return kStatus_Success; +} + +static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle, + void *g_dspiEdmaPrivateHandle, + bool transferDone, + uint32_t tcds) +{ + assert(edmaHandle); + assert(g_dspiEdmaPrivateHandle); + + dspi_slave_edma_private_handle_t *dspiEdmaPrivateHandle; + + dspiEdmaPrivateHandle = (dspi_slave_edma_private_handle_t *)g_dspiEdmaPrivateHandle; + + DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + + dspiEdmaPrivateHandle->handle->state = kDSPI_Idle; + + if (dspiEdmaPrivateHandle->handle->callback) + { + dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle, + kStatus_Success, dspiEdmaPrivateHandle->handle->userData); + } +} + +void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle) +{ + assert(handle); + + DSPI_StopTransfer(base); + + DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); + + EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle); + EDMA_AbortTransfer(handle->edmaTxDataToTxRegHandle); + + handle->state = kDSPI_Idle; +} + +status_t DSPI_SlaveTransferGetCountEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, size_t *count) +{ + assert(handle); + + if (!count) + { + return kStatus_InvalidArgument; + } + + /* Catch when there is not an active transfer. */ + if (handle->state != kDSPI_Busy) + { + *count = 0; + return kStatus_NoTransferInProgress; + } + + size_t bytes; + + bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base, + handle->edmaRxRegToRxDataHandle->channel); + + *count = handle->totalByteCount - bytes; + + return kStatus_Success; +} -- cgit v1.2.3-8-gadcc