summaryrefslogtreecommitdiffhomepage
path: root/drivers/fsl_dspi_edma.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/fsl_dspi_edma.c')
-rw-r--r--drivers/fsl_dspi_edma.c1446
1 files changed, 1446 insertions, 0 deletions
diff --git a/drivers/fsl_dspi_edma.c b/drivers/fsl_dspi_edma.c
new file mode 100644
index 0000000..bbd560e
--- /dev/null
+++ b/drivers/fsl_dspi_edma.c
@@ -0,0 +1,1446 @@
+/*
+ * The Clear BSD License
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * Copyright 2016-2017 NXP
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted (subject to the limitations in the disclaimer below) provided
+ * that the following conditions are met:
+ *
+ * o Redistributions of source code must retain the above copyright notice, this list
+ * of conditions and the following disclaimer.
+ *
+ * o Redistributions in binary form must reproduce the above copyright notice, this
+ * list of conditions and the following disclaimer in the documentation and/or
+ * other materials provided with the distribution.
+ *
+ * o Neither the name of the copyright holder nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "fsl_dspi_edma.h"
+
+/***********************************************************************************************************************
+* Definitions
+***********************************************************************************************************************/
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.dspi_edma"
+#endif
+
+/*!
+* @brief Structure definition for dspi_master_edma_private_handle_t. The structure is private.
+*/
+typedef struct _dspi_master_edma_private_handle
+{
+ SPI_Type *base; /*!< DSPI peripheral base address. */
+ dspi_master_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */
+} dspi_master_edma_private_handle_t;
+
+/*!
+* @brief Structure definition for dspi_slave_edma_private_handle_t. The structure is private.
+*/
+typedef struct _dspi_slave_edma_private_handle
+{
+ SPI_Type *base; /*!< DSPI peripheral base address. */
+ dspi_slave_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */
+} dspi_slave_edma_private_handle_t;
+
+/***********************************************************************************************************************
+* Prototypes
+***********************************************************************************************************************/
+/*!
+* @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA.
+* This is not a public API.
+*/
+static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
+ void *g_dspiEdmaPrivateHandle,
+ bool transferDone,
+ uint32_t tcds);
+
+/*!
+* @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA.
+* This is not a public API.
+*/
+static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
+ void *g_dspiEdmaPrivateHandle,
+ bool transferDone,
+ uint32_t tcds);
+
+/***********************************************************************************************************************
+* Variables
+***********************************************************************************************************************/
+
+/*! @brief Pointers to dspi edma handles for each instance. */
+static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
+static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
+
+/***********************************************************************************************************************
+* Code
+***********************************************************************************************************************/
+
+void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base,
+ dspi_master_edma_handle_t *handle,
+ dspi_master_edma_transfer_callback_t callback,
+ void *userData,
+ edma_handle_t *edmaRxRegToRxDataHandle,
+ edma_handle_t *edmaTxDataToIntermediaryHandle,
+ edma_handle_t *edmaIntermediaryToTxRegHandle)
+{
+ assert(handle);
+ assert(edmaRxRegToRxDataHandle);
+#if (!(defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET))
+ assert(edmaTxDataToIntermediaryHandle);
+#endif
+ assert(edmaIntermediaryToTxRegHandle);
+
+ /* Zero the handle. */
+ memset(handle, 0, sizeof(*handle));
+
+ uint32_t instance = DSPI_GetInstance(base);
+
+ s_dspiMasterEdmaPrivateHandle[instance].base = base;
+ s_dspiMasterEdmaPrivateHandle[instance].handle = handle;
+
+ handle->callback = callback;
+ handle->userData = userData;
+
+ handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle;
+ handle->edmaTxDataToIntermediaryHandle = edmaTxDataToIntermediaryHandle;
+ handle->edmaIntermediaryToTxRegHandle = edmaIntermediaryToTxRegHandle;
+}
+
+status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer)
+{
+ assert(handle);
+ assert(transfer);
+
+ /* If the transfer count is zero, then return immediately.*/
+ if (transfer->dataSize == 0)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* If both send buffer and receive buffer is null */
+ if ((!(transfer->txData)) && (!(transfer->rxData)))
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Check that we're not busy.*/
+ if (handle->state == kDSPI_Busy)
+ {
+ return kStatus_DSPI_Busy;
+ }
+
+ handle->state = kDSPI_Busy;
+
+ uint32_t instance = DSPI_GetInstance(base);
+ uint16_t wordToSend = 0;
+ uint8_t dummyData = g_dspiDummyData[DSPI_GetInstance(base)];
+ uint8_t dataAlreadyFed = 0;
+ uint8_t dataFedMax = 2;
+
+ uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
+ uint32_t txAddr = DSPI_MasterGetTxRegisterAddress(base);
+
+ edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU));
+
+ edma_transfer_config_t transferConfigA;
+ edma_transfer_config_t transferConfigB;
+
+ handle->txBuffIfNull = ((uint32_t)dummyData << 8) | dummyData;
+
+ dspi_command_data_config_t commandStruct;
+ DSPI_StopTransfer(base);
+ DSPI_FlushFifo(base, true, true);
+ DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
+
+ commandStruct.whichPcs =
+ (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
+ commandStruct.isEndOfQueue = false;
+ commandStruct.clearTransferCount = false;
+ commandStruct.whichCtar =
+ (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
+ commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);
+ handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+ commandStruct.isEndOfQueue = true;
+ commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
+ handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+ handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;
+
+ if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
+ {
+ handle->fifoSize = 1;
+ }
+ else
+ {
+ handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
+ }
+ handle->txData = transfer->txData;
+ handle->rxData = transfer->rxData;
+ handle->remainingSendByteCount = transfer->dataSize;
+ handle->remainingReceiveByteCount = transfer->dataSize;
+ handle->totalByteCount = transfer->dataSize;
+
+ /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
+ * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
+ */
+ uint32_t limited_size = 0;
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ limited_size = 32767u;
+ }
+ else
+ {
+ limited_size = 511u;
+ }
+
+ if (handle->bitsPerFrame > 8)
+ {
+ if (transfer->dataSize > (limited_size << 1u))
+ {
+ handle->state = kDSPI_Idle;
+ return kStatus_DSPI_OutOfRange;
+ }
+ }
+ else
+ {
+ if (transfer->dataSize > limited_size)
+ {
+ handle->state = kDSPI_Idle;
+ return kStatus_DSPI_OutOfRange;
+ }
+ }
+
+ /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
+ if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1))
+ {
+ handle->state = kDSPI_Idle;
+ return kStatus_InvalidArgument;
+ }
+
+ DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+
+ EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback,
+ &s_dspiMasterEdmaPrivateHandle[instance]);
+
+ /*
+ (1)For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C.
+ channel_A minor link to channel_B , channel_B minor link to channel_C.
+
+ Already pushed 1 or 2 data in SPI_PUSHR , then start the DMA tansfer.
+ channel_A:SPI_POPR to rxData,
+ channel_B:next txData to handle->command (low 16 bits),
+ channel_C:handle->command (32 bits) to SPI_PUSHR, and use the scatter/gather to transfer the last data
+ (handle->lastCommand to SPI_PUSHR).
+
+ (2)For DSPI instances with separate RX and TX DMA requests:
+ Rx DMA request -> channel_A
+ Tx DMA request -> channel_C -> channel_B .
+ channel_C major link to channel_B.
+ So need prepare the first data in "intermediary" before the DMA
+ transfer and then channel_B is used to prepare the next data to "intermediary"
+
+ channel_A:SPI_POPR to rxData,
+ channel_C: handle->command (32 bits) to SPI_PUSHR,
+ channel_B: next txData to handle->command (low 16 bits), and use the scatter/gather to prepare the last data
+ (handle->lastCommand to handle->Command).
+ */
+
+ /*If dspi has separate dma request , prepare the first data in "intermediary" .
+ else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ /* For DSPI instances with separate RX/TX DMA requests, we'll use the TX DMA request to
+ * trigger the TX DMA channel and RX DMA request to trigger the RX DMA channel
+ */
+
+ /*Prepare the firt data*/
+ if (handle->bitsPerFrame > 8)
+ {
+ /* If it's the last word */
+ if (handle->remainingSendByteCount <= 2)
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData; /* increment to next data byte */
+ wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+ }
+ else
+ {
+ wordToSend = ((uint32_t)dummyData << 8) | dummyData;
+ }
+ handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
+ handle->command = handle->lastCommand;
+ }
+ else /* For all words except the last word , frame > 8bits */
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData; /* increment to next data byte */
+ wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+ ++handle->txData; /* increment to next data byte */
+ }
+ else
+ {
+ wordToSend = ((uint32_t)dummyData << 8) | dummyData;
+ }
+ handle->command = (handle->command & 0xffff0000U) | wordToSend;
+ }
+ }
+ else /* Optimized for bits/frame less than or equal to one byte. */
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData; /* increment to next data word*/
+ }
+ else
+ {
+ wordToSend = dummyData;
+ }
+
+ if (handle->remainingSendByteCount == 1)
+ {
+ handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
+ handle->command = handle->lastCommand;
+ }
+ else
+ {
+ handle->command = (handle->command & 0xffff0000U) | wordToSend;
+ }
+ }
+ }
+
+ else /*dspi has shared dma request*/
+ {
+ /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
+ * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
+ */
+
+ /* If bits/frame is greater than one byte */
+ if (handle->bitsPerFrame > 8)
+ {
+ while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
+ {
+ if (handle->remainingSendByteCount <= 2)
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData;
+ wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+ }
+ else
+ {
+ wordToSend = ((uint32_t)dummyData << 8) | dummyData;
+ }
+ handle->remainingSendByteCount = 0;
+ base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
+ }
+ /* For all words except the last word */
+ else
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData;
+ wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+ ++handle->txData;
+ }
+ else
+ {
+ wordToSend = ((uint32_t)dummyData << 8) | dummyData;
+ }
+ handle->remainingSendByteCount -= 2;
+ base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
+ }
+
+ /* Try to clear the TFFF; if the TX FIFO is full this will clear */
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ dataAlreadyFed += 2;
+
+ /* exit loop if send count is zero, else update local variables for next loop */
+ if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2)))
+ {
+ break;
+ }
+ } /* End of TX FIFO fill while loop */
+ }
+ else /* Optimized for bits/frame less than or equal to one byte. */
+ {
+ while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData;
+ }
+ else
+ {
+ wordToSend = dummyData;
+ }
+
+ if (handle->remainingSendByteCount == 1)
+ {
+ base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
+ }
+ else
+ {
+ base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
+ }
+
+ /* Try to clear the TFFF; if the TX FIFO is full this will clear */
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ --handle->remainingSendByteCount;
+
+ dataAlreadyFed++;
+
+ /* exit loop if send count is zero, else update local variables for next loop */
+ if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax))
+ {
+ break;
+ }
+ } /* End of TX FIFO fill while loop */
+ }
+ }
+
+ /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer(rxData)*/
+ EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);
+
+ transferConfigA.srcAddr = (uint32_t)rxAddr;
+ transferConfigA.srcOffset = 0;
+
+ if (handle->rxData)
+ {
+ transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
+ transferConfigA.destOffset = 1;
+ }
+ else
+ {
+ transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
+ transferConfigA.destOffset = 0;
+ }
+
+ transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;
+
+ if (handle->bitsPerFrame <= 8)
+ {
+ transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
+ transferConfigA.minorLoopBytes = 1;
+ transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
+ }
+ else
+ {
+ transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
+ transferConfigA.minorLoopBytes = 2;
+ transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2;
+ }
+
+ /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */
+ handle->nbytes = transferConfigA.minorLoopBytes;
+
+ EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ &transferConfigA, NULL);
+ EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ kEDMA_MajorInterruptEnable);
+
+ /*Calculate the last data : handle->lastCommand*/
+ if (((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
+ ((((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) ||
+ ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8))) &&
+ (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
+ {
+ if (handle->txData)
+ {
+ uint32_t bufferIndex = 0;
+
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ if (handle->bitsPerFrame <= 8)
+ {
+ bufferIndex = handle->remainingSendByteCount - 1;
+ }
+ else
+ {
+ bufferIndex = handle->remainingSendByteCount - 2;
+ }
+ }
+ else
+ {
+ bufferIndex = handle->remainingSendByteCount;
+ }
+
+ if (handle->bitsPerFrame <= 8)
+ {
+ handle->lastCommand = (handle->lastCommand & 0xffff0000U) | handle->txData[bufferIndex - 1];
+ }
+ else
+ {
+ handle->lastCommand = (handle->lastCommand & 0xffff0000U) |
+ ((uint32_t)handle->txData[bufferIndex - 1] << 8) |
+ handle->txData[bufferIndex - 2];
+ }
+ }
+ else
+ {
+ if (handle->bitsPerFrame <= 8)
+ {
+ wordToSend = dummyData;
+ }
+ else
+ {
+ wordToSend = ((uint32_t)dummyData << 8) | dummyData;
+ }
+ handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
+ }
+ }
+
+/* The feature of GASKET is that the SPI supports 8-bit or 16-bit writes to the PUSH TX FIFO,
+ * allowing a single write to the command word followed by multiple writes to the transmit word.
+ * The TX FIFO will save the last command word written, and convert a 8-bit/16-bit write to the
+ * transmit word into a 32-bit write that pushes both the command word and transmit word into
+ * the TX FIFO (PUSH TX FIFO Register In Master Mode)
+ * So, if this feature is supported, we can use use one channel to carry the receive data from
+ * receive regsiter to user data buffer, use the other channel to carry the data from user data buffer
+ * to transmit register,and use the scatter/gather function to prepare the last data.
+ * That is to say, if GASKET feature is supported, we can use only two channels for tansferring data.
+ */
+#if defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET
+ /* For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
+ * (handle->lastCommand) to PUSHR register.
+ */
+
+ EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
+
+ if ((1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) ||
+ ((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
+ {
+ transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
+ transferConfigB.destAddr = (uint32_t)txAddr;
+ transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
+ transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
+ transferConfigB.srcOffset = 0;
+ transferConfigB.destOffset = 0;
+ transferConfigB.minorLoopBytes = 4;
+ transferConfigB.majorLoopCounts = 1;
+
+ EDMA_TcdReset(softwareTCD);
+ EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL);
+ }
+
+ /*User_Send_Buffer(txData) to PUSHR register. */
+ if (((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame <= 8)) ||
+ ((handle->remainingSendByteCount > 4) && (handle->bitsPerFrame > 8)))
+ {
+ if (handle->txData)
+ {
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ /* For DSPI with separate RX and TX DMA requests, one frame data has been carry
+ * to handle->command, so need to reduce the pointer of txData.
+ */
+ transferConfigB.srcAddr =
+ (uint32_t)((uint8_t *)(handle->txData) - ((handle->bitsPerFrame <= 8) ? (1U) : (2U)));
+ transferConfigB.srcOffset = 1;
+ }
+ else
+ {
+ /* For DSPI with shared RX and TX DMA requests, one or two frame data have been carry
+ * to PUSHR register, so no need to change the pointer of txData.
+ */
+ transferConfigB.srcAddr = (uint32_t)((uint8_t *)(handle->txData));
+ transferConfigB.srcOffset = 1;
+ }
+ }
+ else
+ {
+ transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
+ transferConfigB.srcOffset = 0;
+ }
+
+ transferConfigB.destAddr = (uint32_t)txAddr;
+ transferConfigB.destOffset = 0;
+
+ transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
+
+ if (handle->bitsPerFrame <= 8)
+ {
+ transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
+ transferConfigB.minorLoopBytes = 1;
+
+ transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 1;
+ }
+ else
+ {
+ transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
+ transferConfigB.minorLoopBytes = 2;
+ transferConfigB.majorLoopCounts = (handle->remainingSendByteCount / 2) - 1;
+ }
+
+ EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, softwareTCD);
+ }
+ /* If only one word to transmit, only carry the lastcommand. */
+ else
+ {
+ EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, NULL);
+ }
+
+ /*Start the EDMA channel_A , channel_C. */
+ EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
+ EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);
+
+ /* Set the channel link.
+ * For DSPI instances with shared TX and RX DMA requests, setup channel minor link, first receive data from the
+ * receive register, and then carry transmit data to PUSHER register.
+ * For DSPI instance with separate TX and RX DMA requests, there is no need to set up channel link.
+ */
+ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ /*Set channel priority*/
+ uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
+ uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
+ uint8_t t = 0;
+
+ if (channelPriorityLow > channelPriorityHigh)
+ {
+ t = channelPriorityLow;
+ channelPriorityLow = channelPriorityHigh;
+ channelPriorityHigh = t;
+ }
+
+ edma_channel_Preemption_config_t preemption_config_t;
+ preemption_config_t.enableChannelPreemption = true;
+ preemption_config_t.enablePreemptAbility = true;
+ preemption_config_t.channelPriority = channelPriorityLow;
+
+ EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ &preemption_config_t);
+
+ preemption_config_t.channelPriority = channelPriorityHigh;
+ EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
+ /*if there is Rx DMA request , carry the 32bits data (handle->command) to user data first , then link to
+ channelC to carry the next data to PUSHER register.(txData to PUSHER) */
+ if (handle->remainingSendByteCount > 0)
+ {
+ EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ kEDMA_MinorLink, handle->edmaIntermediaryToTxRegHandle->channel);
+ }
+ }
+
+ DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+
+ /* Setup control info to PUSHER register. */
+ *((uint16_t *)&(base->PUSHR) + 1) = (handle->command >> 16U);
+#else
+
+ /***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should
+ write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the
+ SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */
+
+ EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel);
+
+ /*For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
+ * (handle->lastCommand) to handle->Command*/
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
+ transferConfigB.destAddr = (uint32_t) & (handle->command);
+ transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
+ transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
+ transferConfigB.srcOffset = 0;
+ transferConfigB.destOffset = 0;
+ transferConfigB.minorLoopBytes = 4;
+ transferConfigB.majorLoopCounts = 1;
+
+ EDMA_TcdReset(softwareTCD);
+ EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL);
+ }
+
+ /*User_Send_Buffer(txData) to intermediary(handle->command)*/
+ if (((((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame <= 8)) ||
+ ((handle->remainingSendByteCount > 4) && (handle->bitsPerFrame > 8))) &&
+ (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
+ (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
+ {
+ if (handle->txData)
+ {
+ transferConfigB.srcAddr = (uint32_t)(handle->txData);
+ transferConfigB.srcOffset = 1;
+ }
+ else
+ {
+ transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
+ transferConfigB.srcOffset = 0;
+ }
+
+ transferConfigB.destAddr = (uint32_t)(&handle->command);
+ transferConfigB.destOffset = 0;
+
+ transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
+
+ if (handle->bitsPerFrame <= 8)
+ {
+ transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
+ transferConfigB.minorLoopBytes = 1;
+
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 2;
+ }
+ else
+ {
+ /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
+ majorlink , the majorlink would not trigger the channel_C*/
+ transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1;
+ }
+ }
+ else
+ {
+ transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
+ transferConfigB.minorLoopBytes = 2;
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 - 2;
+ }
+ else
+ {
+ /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
+ * majorlink*/
+ transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 + 1;
+ }
+ }
+
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
+ handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, softwareTCD);
+ EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, false);
+ }
+ else
+ {
+ EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
+ handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL);
+ }
+ }
+ else
+ {
+ EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
+ handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL);
+ }
+
+ /***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to
+ handle the last data */
+
+ edma_transfer_config_t transferConfigC;
+ EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
+
+ /*For DSPI instances with shared RX/TX DMA requests: use the scatter/gather to prepare the last data
+ * (handle->lastCommand) to SPI_PUSHR*/
+ if (((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (handle->remainingSendByteCount > 0)))
+ {
+ transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand);
+ transferConfigC.destAddr = (uint32_t)txAddr;
+ transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
+ transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
+ transferConfigC.srcOffset = 0;
+ transferConfigC.destOffset = 0;
+ transferConfigC.minorLoopBytes = 4;
+ transferConfigC.majorLoopCounts = 1;
+
+ EDMA_TcdReset(softwareTCD);
+ EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigC, NULL);
+ }
+
+ if (((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) ||
+ ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8)) ||
+ (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
+ {
+ transferConfigC.srcAddr = (uint32_t)(&(handle->command));
+ transferConfigC.destAddr = (uint32_t)txAddr;
+
+ transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
+ transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
+ transferConfigC.srcOffset = 0;
+ transferConfigC.destOffset = 0;
+ transferConfigC.minorLoopBytes = 4;
+ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ if (handle->bitsPerFrame <= 8)
+ {
+ transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1;
+ }
+ else
+ {
+ transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2 - 1;
+ }
+
+ EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, softwareTCD);
+ }
+ else
+ {
+ transferConfigC.majorLoopCounts = 1;
+
+ EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL);
+ }
+
+ EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, false);
+ }
+ else
+ {
+ EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL);
+ }
+
+ /*Start the EDMA channel_A , channel_B , channel_C transfer*/
+ EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
+ EDMA_StartTransfer(handle->edmaTxDataToIntermediaryHandle);
+ EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);
+
+ /*Set channel priority*/
+ uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
+ uint8_t channelPriorityMid = handle->edmaTxDataToIntermediaryHandle->channel;
+ uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
+ uint8_t t = 0;
+ if (channelPriorityLow > channelPriorityMid)
+ {
+ t = channelPriorityLow;
+ channelPriorityLow = channelPriorityMid;
+ channelPriorityMid = t;
+ }
+
+ if (channelPriorityLow > channelPriorityHigh)
+ {
+ t = channelPriorityLow;
+ channelPriorityLow = channelPriorityHigh;
+ channelPriorityHigh = t;
+ }
+
+ if (channelPriorityMid > channelPriorityHigh)
+ {
+ t = channelPriorityMid;
+ channelPriorityMid = channelPriorityHigh;
+ channelPriorityHigh = t;
+ }
+ edma_channel_Preemption_config_t preemption_config_t;
+ preemption_config_t.enableChannelPreemption = true;
+ preemption_config_t.enablePreemptAbility = true;
+ preemption_config_t.channelPriority = channelPriorityLow;
+
+ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ &preemption_config_t);
+
+ preemption_config_t.channelPriority = channelPriorityMid;
+ EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
+ handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t);
+
+ preemption_config_t.channelPriority = channelPriorityHigh;
+ EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
+ }
+ else
+ {
+ EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
+
+ preemption_config_t.channelPriority = channelPriorityMid;
+ EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
+ handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t);
+
+ preemption_config_t.channelPriority = channelPriorityHigh;
+ EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ &preemption_config_t);
+ }
+
+ /*Set the channel link.*/
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ /*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB
+ to prepare the next 32bits data (txData to handle->command) */
+ if (handle->remainingSendByteCount > 1)
+ {
+ EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base,
+ handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MajorLink,
+ handle->edmaTxDataToIntermediaryHandle->channel);
+ }
+
+ DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+ }
+ else
+ {
+ if (handle->remainingSendByteCount > 0)
+ {
+ EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ kEDMA_MinorLink, handle->edmaTxDataToIntermediaryHandle->channel);
+
+ EDMA_SetChannelLink(handle->edmaTxDataToIntermediaryHandle->base,
+ handle->edmaTxDataToIntermediaryHandle->channel, kEDMA_MinorLink,
+ handle->edmaIntermediaryToTxRegHandle->channel);
+ }
+
+ DSPI_EnableDMA(base, kDSPI_RxDmaEnable);
+ }
+#endif
+ DSPI_StartTransfer(base);
+
+ return kStatus_Success;
+}
+
+status_t DSPI_MasterHalfDuplexTransferEDMA(SPI_Type *base,
+ dspi_master_edma_handle_t *handle,
+ dspi_half_duplex_transfer_t *xfer)
+{
+ assert(xfer);
+ assert(handle);
+ dspi_transfer_t tempXfer = {0};
+ status_t status;
+
+ if (xfer->isTransmitFirst)
+ {
+ tempXfer.txData = xfer->txData;
+ tempXfer.rxData = NULL;
+ tempXfer.dataSize = xfer->txDataSize;
+ }
+ else
+ {
+ tempXfer.txData = NULL;
+ tempXfer.rxData = xfer->rxData;
+ tempXfer.dataSize = xfer->rxDataSize;
+ }
+ /* If the pcs pin keep assert between transmit and receive. */
+ if (xfer->isPcsAssertInTransfer)
+ {
+ tempXfer.configFlags = (xfer->configFlags) | kDSPI_MasterActiveAfterTransfer;
+ }
+ else
+ {
+ tempXfer.configFlags = (xfer->configFlags) & (uint32_t)(~kDSPI_MasterActiveAfterTransfer);
+ }
+
+ status = DSPI_MasterTransferBlocking(base, &tempXfer);
+ if (status != kStatus_Success)
+ {
+ return status;
+ }
+
+ if (xfer->isTransmitFirst)
+ {
+ tempXfer.txData = NULL;
+ tempXfer.rxData = xfer->rxData;
+ tempXfer.dataSize = xfer->rxDataSize;
+ }
+ else
+ {
+ tempXfer.txData = xfer->txData;
+ tempXfer.rxData = NULL;
+ tempXfer.dataSize = xfer->txDataSize;
+ }
+ tempXfer.configFlags = xfer->configFlags;
+
+ status = DSPI_MasterTransferEDMA(base, handle, &tempXfer);
+
+ return status;
+}
+static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
+ void *g_dspiEdmaPrivateHandle,
+ bool transferDone,
+ uint32_t tcds)
+{
+ assert(edmaHandle);
+ assert(g_dspiEdmaPrivateHandle);
+
+ dspi_master_edma_private_handle_t *dspiEdmaPrivateHandle;
+
+ dspiEdmaPrivateHandle = (dspi_master_edma_private_handle_t *)g_dspiEdmaPrivateHandle;
+
+ DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+
+ dspiEdmaPrivateHandle->handle->state = kDSPI_Idle;
+
+ if (dspiEdmaPrivateHandle->handle->callback)
+ {
+ dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
+ kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
+ }
+}
+
+void DSPI_MasterTransferAbortEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle)
+{
+ assert(handle);
+
+ DSPI_StopTransfer(base);
+
+ DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+
+ EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle);
+ EDMA_AbortTransfer(handle->edmaTxDataToIntermediaryHandle);
+ EDMA_AbortTransfer(handle->edmaIntermediaryToTxRegHandle);
+
+ handle->state = kDSPI_Idle;
+}
+
+status_t DSPI_MasterTransferGetCountEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, size_t *count)
+{
+ assert(handle);
+
+ if (!count)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Catch when there is not an active transfer. */
+ if (handle->state != kDSPI_Busy)
+ {
+ *count = 0;
+ return kStatus_NoTransferInProgress;
+ }
+
+ size_t bytes;
+
+ bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base,
+ handle->edmaRxRegToRxDataHandle->channel);
+
+ *count = handle->totalByteCount - bytes;
+
+ return kStatus_Success;
+}
+
+void DSPI_SlaveTransferCreateHandleEDMA(SPI_Type *base,
+ dspi_slave_edma_handle_t *handle,
+ dspi_slave_edma_transfer_callback_t callback,
+ void *userData,
+ edma_handle_t *edmaRxRegToRxDataHandle,
+ edma_handle_t *edmaTxDataToTxRegHandle)
+{
+ assert(handle);
+ assert(edmaRxRegToRxDataHandle);
+ assert(edmaTxDataToTxRegHandle);
+
+ /* Zero the handle. */
+ memset(handle, 0, sizeof(*handle));
+
+ uint32_t instance = DSPI_GetInstance(base);
+
+ s_dspiSlaveEdmaPrivateHandle[instance].base = base;
+ s_dspiSlaveEdmaPrivateHandle[instance].handle = handle;
+
+ handle->callback = callback;
+ handle->userData = userData;
+
+ handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle;
+ handle->edmaTxDataToTxRegHandle = edmaTxDataToTxRegHandle;
+}
+
+status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_transfer_t *transfer)
+{
+ assert(handle);
+ assert(transfer);
+
+ /* If send/receive length is zero */
+ if (transfer->dataSize == 0)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* If both send buffer and receive buffer is null */
+ if ((!(transfer->txData)) && (!(transfer->rxData)))
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Check that we're not busy.*/
+ if (handle->state == kDSPI_Busy)
+ {
+ return kStatus_DSPI_Busy;
+ }
+
+ handle->state = kDSPI_Busy;
+
+ uint32_t instance = DSPI_GetInstance(base);
+ uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT;
+ handle->bitsPerFrame =
+ (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1;
+
+ /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
+ * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
+ */
+ uint32_t limited_size = 0;
+ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ limited_size = 32767u;
+ }
+ else
+ {
+ limited_size = 511u;
+ }
+
+ if (handle->bitsPerFrame > 8)
+ {
+ if (transfer->dataSize > (limited_size << 1u))
+ {
+ handle->state = kDSPI_Idle;
+ return kStatus_DSPI_OutOfRange;
+ }
+ }
+ else
+ {
+ if (transfer->dataSize > limited_size)
+ {
+ handle->state = kDSPI_Idle;
+ return kStatus_DSPI_OutOfRange;
+ }
+ }
+
+ /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
+ if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1))
+ {
+ handle->state = kDSPI_Idle;
+ return kStatus_InvalidArgument;
+ }
+
+ EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]);
+
+ /* Store transfer information */
+ handle->txData = transfer->txData;
+ handle->rxData = transfer->rxData;
+ handle->remainingSendByteCount = transfer->dataSize;
+ handle->remainingReceiveByteCount = transfer->dataSize;
+ handle->totalByteCount = transfer->dataSize;
+
+ uint16_t wordToSend = 0;
+ uint8_t dummyData = g_dspiDummyData[DSPI_GetInstance(base)];
+ uint8_t dataAlreadyFed = 0;
+ uint8_t dataFedMax = 2;
+
+ uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
+ uint32_t txAddr = DSPI_SlaveGetTxRegisterAddress(base);
+
+ edma_transfer_config_t transferConfigA;
+ edma_transfer_config_t transferConfigC;
+
+ DSPI_StopTransfer(base);
+
+ DSPI_FlushFifo(base, true, true);
+ DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
+
+ DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+
+ DSPI_StartTransfer(base);
+
+ /*if dspi has separate dma request , need not prepare data first .
+ else (dspi has shared dma request) , send first 2 data into fifo if there is fifo or send first 1 data to
+ slaveGetTxRegister if there is no fifo*/
+ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
+ * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
+ */
+ /* If bits/frame is greater than one byte */
+ if (handle->bitsPerFrame > 8)
+ {
+ while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData; /* Increment to next data byte */
+
+ wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+ ++handle->txData; /* Increment to next data byte */
+ }
+ else
+ {
+ wordToSend = ((uint32_t)dummyData << 8) | dummyData;
+ }
+ handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */
+ base->PUSHR_SLAVE = wordToSend;
+
+ /* Try to clear the TFFF; if the TX FIFO is full this will clear */
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ dataAlreadyFed += 2;
+
+ /* Exit loop if send count is zero, else update local variables for next loop */
+ if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2)))
+ {
+ break;
+ }
+ } /* End of TX FIFO fill while loop */
+ }
+ else /* Optimized for bits/frame less than or equal to one byte. */
+ {
+ while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ /* Increment to next data word*/
+ ++handle->txData;
+ }
+ else
+ {
+ wordToSend = dummyData;
+ }
+
+ base->PUSHR_SLAVE = wordToSend;
+
+ /* Try to clear the TFFF; if the TX FIFO is full this will clear */
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ /* Decrement remainingSendByteCount*/
+ --handle->remainingSendByteCount;
+
+ dataAlreadyFed++;
+
+ /* Exit loop if send count is zero, else update local variables for next loop */
+ if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax))
+ {
+ break;
+ }
+ } /* End of TX FIFO fill while loop */
+ }
+ }
+
+ /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/
+ if (handle->remainingReceiveByteCount > 0)
+ {
+ EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);
+
+ transferConfigA.srcAddr = (uint32_t)rxAddr;
+ transferConfigA.srcOffset = 0;
+
+ if (handle->rxData)
+ {
+ transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
+ transferConfigA.destOffset = 1;
+ }
+ else
+ {
+ transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
+ transferConfigA.destOffset = 0;
+ }
+
+ transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;
+
+ if (handle->bitsPerFrame <= 8)
+ {
+ transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
+ transferConfigA.minorLoopBytes = 1;
+ transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
+ }
+ else
+ {
+ transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
+ transferConfigA.minorLoopBytes = 2;
+ transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2;
+ }
+
+ /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */
+ handle->nbytes = transferConfigA.minorLoopBytes;
+
+ EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ &transferConfigA, NULL);
+ EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ kEDMA_MajorInterruptEnable);
+ }
+
+ if (handle->remainingSendByteCount > 0)
+ {
+ /***channel_C *** used for carry the data from User_Send_Buffer to Tx_Data_Register(PUSHR_SLAVE)*/
+ EDMA_ResetChannel(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel);
+
+ transferConfigC.destAddr = (uint32_t)txAddr;
+ transferConfigC.destOffset = 0;
+
+ if (handle->txData)
+ {
+ transferConfigC.srcAddr = (uint32_t)(&(handle->txData[0]));
+ transferConfigC.srcOffset = 1;
+ }
+ else
+ {
+ transferConfigC.srcAddr = (uint32_t)(&handle->txBuffIfNull);
+ transferConfigC.srcOffset = 0;
+ if (handle->bitsPerFrame <= 8)
+ {
+ handle->txBuffIfNull = dummyData;
+ }
+ else
+ {
+ handle->txBuffIfNull = ((uint32_t)dummyData << 8) | dummyData;
+ }
+ }
+
+ transferConfigC.srcTransferSize = kEDMA_TransferSize1Bytes;
+
+ if (handle->bitsPerFrame <= 8)
+ {
+ transferConfigC.destTransferSize = kEDMA_TransferSize1Bytes;
+ transferConfigC.minorLoopBytes = 1;
+ transferConfigC.majorLoopCounts = handle->remainingSendByteCount;
+ }
+ else
+ {
+ transferConfigC.destTransferSize = kEDMA_TransferSize2Bytes;
+ transferConfigC.minorLoopBytes = 2;
+ transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2;
+ }
+
+ EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
+ &transferConfigC, NULL);
+
+ EDMA_StartTransfer(handle->edmaTxDataToTxRegHandle);
+ }
+
+ EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
+
+ /*Set channel priority*/
+ uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
+ uint8_t channelPriorityHigh = handle->edmaTxDataToTxRegHandle->channel;
+ uint8_t t = 0;
+
+ if (channelPriorityLow > channelPriorityHigh)
+ {
+ t = channelPriorityLow;
+ channelPriorityLow = channelPriorityHigh;
+ channelPriorityHigh = t;
+ }
+
+ edma_channel_Preemption_config_t preemption_config_t;
+ preemption_config_t.enableChannelPreemption = true;
+ preemption_config_t.enablePreemptAbility = true;
+ preemption_config_t.channelPriority = channelPriorityLow;
+
+ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ &preemption_config_t);
+
+ preemption_config_t.channelPriority = channelPriorityHigh;
+ EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
+ &preemption_config_t);
+ }
+ else
+ {
+ EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
+ &preemption_config_t);
+
+ preemption_config_t.channelPriority = channelPriorityHigh;
+ EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ &preemption_config_t);
+ }
+
+ /*Set the channel link.
+ For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_C.
+ For DSPI instances with separate RX and TX DMA requests:
+ Rx DMA request -> channel_A
+ Tx DMA request -> channel_C */
+ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
+ {
+ if (handle->remainingSendByteCount > 0)
+ {
+ EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
+ kEDMA_MinorLink, handle->edmaTxDataToTxRegHandle->channel);
+ }
+ DSPI_EnableDMA(base, kDSPI_RxDmaEnable);
+ }
+ else
+ {
+ DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+ }
+
+ return kStatus_Success;
+}
+
+static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
+ void *g_dspiEdmaPrivateHandle,
+ bool transferDone,
+ uint32_t tcds)
+{
+ assert(edmaHandle);
+ assert(g_dspiEdmaPrivateHandle);
+
+ dspi_slave_edma_private_handle_t *dspiEdmaPrivateHandle;
+
+ dspiEdmaPrivateHandle = (dspi_slave_edma_private_handle_t *)g_dspiEdmaPrivateHandle;
+
+ DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+
+ dspiEdmaPrivateHandle->handle->state = kDSPI_Idle;
+
+ if (dspiEdmaPrivateHandle->handle->callback)
+ {
+ dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
+ kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
+ }
+}
+
+void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle)
+{
+ assert(handle);
+
+ DSPI_StopTransfer(base);
+
+ DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
+
+ EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle);
+ EDMA_AbortTransfer(handle->edmaTxDataToTxRegHandle);
+
+ handle->state = kDSPI_Idle;
+}
+
+status_t DSPI_SlaveTransferGetCountEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, size_t *count)
+{
+ assert(handle);
+
+ if (!count)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Catch when there is not an active transfer. */
+ if (handle->state != kDSPI_Busy)
+ {
+ *count = 0;
+ return kStatus_NoTransferInProgress;
+ }
+
+ size_t bytes;
+
+ bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base,
+ handle->edmaRxRegToRxDataHandle->channel);
+
+ *count = handle->totalByteCount - bytes;
+
+ return kStatus_Success;
+}