summaryrefslogtreecommitdiffhomepage
path: root/drivers/fsl_i2c.c
diff options
context:
space:
mode:
authormindchasers <repos@mindchasers.com>2019-07-07 17:58:07 -0400
committermindchasers <repos@mindchasers.com>2019-07-07 17:58:07 -0400
commited46e1a38ae2de97b55c1843bad8b813bd4936e3 (patch)
treea19986996b97fb8daf5887eec41e5da5724dc11d /drivers/fsl_i2c.c
initial commit of private island ARM test suiteHEADmaster
Diffstat (limited to 'drivers/fsl_i2c.c')
-rw-r--r--drivers/fsl_i2c.c2005
1 files changed, 2005 insertions, 0 deletions
diff --git a/drivers/fsl_i2c.c b/drivers/fsl_i2c.c
new file mode 100644
index 0000000..d3da84a
--- /dev/null
+++ b/drivers/fsl_i2c.c
@@ -0,0 +1,2005 @@
+/*
+ * The Clear BSD License
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * Copyright 2016-2017 NXP
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted (subject to the limitations in the disclaimer below) provided
+ * that the following conditions are met:
+ *
+ * o Redistributions of source code must retain the above copyright notice, this list
+ * of conditions and the following disclaimer.
+ *
+ * o Redistributions in binary form must reproduce the above copyright notice, this
+ * list of conditions and the following disclaimer in the documentation and/or
+ * other materials provided with the distribution.
+ *
+ * o Neither the name of the copyright holder nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+#include "fsl_i2c.h"
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.i2c"
+#endif
+
+
+/*! @brief i2c transfer state. */
+enum _i2c_transfer_states
+{
+ kIdleState = 0x0U, /*!< I2C bus idle. */
+ kCheckAddressState = 0x1U, /*!< 7-bit address check state. */
+ kSendCommandState = 0x2U, /*!< Send command byte phase. */
+ kSendDataState = 0x3U, /*!< Send data transfer phase. */
+ kReceiveDataBeginState = 0x4U, /*!< Receive data transfer phase begin. */
+ kReceiveDataState = 0x5U, /*!< Receive data transfer phase. */
+};
+
+/*! @brief Common sets of flags used by the driver. */
+enum _i2c_flag_constants
+{
+/*! All flags which are cleared by the driver upon starting a transfer. */
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ kClearFlags = kI2C_ArbitrationLostFlag | kI2C_IntPendingFlag | kI2C_StartDetectFlag | kI2C_StopDetectFlag,
+ kIrqFlags = kI2C_GlobalInterruptEnable | kI2C_StartStopDetectInterruptEnable,
+#elif defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT
+ kClearFlags = kI2C_ArbitrationLostFlag | kI2C_IntPendingFlag | kI2C_StopDetectFlag,
+ kIrqFlags = kI2C_GlobalInterruptEnable | kI2C_StopDetectInterruptEnable,
+#else
+ kClearFlags = kI2C_ArbitrationLostFlag | kI2C_IntPendingFlag,
+ kIrqFlags = kI2C_GlobalInterruptEnable,
+#endif
+
+};
+
+/*! @brief Typedef for interrupt handler. */
+typedef void (*i2c_isr_t)(I2C_Type *base, void *i2cHandle);
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+
+/*!
+* @brief Set SCL/SDA hold time, this API receives SCL stop hold time, calculate the
+* closest SCL divider and MULT value for the SDA hold time, SCL start and SCL stop
+* hold time. To reduce the ROM size, SDA/SCL hold value mapping table is not provided,
+* assume SCL divider = SCL stop hold value *2 to get the closest SCL divider value and MULT
+* value, then the related SDA hold time, SCL start and SCL stop hold time is used.
+*
+* @param base I2C peripheral base address.
+* @param sourceClock_Hz I2C functional clock frequency in Hertz.
+* @param sclStopHoldTime_ns SCL stop hold time in ns.
+*/
+static void I2C_SetHoldTime(I2C_Type *base, uint32_t sclStopHoldTime_ns, uint32_t sourceClock_Hz);
+
+/*!
+ * @brief Set up master transfer, send slave address and decide the initial
+ * transfer state.
+ *
+ * @param base I2C peripheral base address.
+ * @param handle pointer to i2c_master_handle_t structure which stores the transfer state.
+ * @param xfer pointer to i2c_master_transfer_t structure.
+ */
+static status_t I2C_InitTransferStateMachine(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer);
+
+/*!
+ * @brief Check and clear status operation.
+ *
+ * @param base I2C peripheral base address.
+ * @param status current i2c hardware status.
+ * @retval kStatus_Success No error found.
+ * @retval kStatus_I2C_ArbitrationLost Transfer error, arbitration lost.
+ * @retval kStatus_I2C_Nak Received Nak error.
+ */
+static status_t I2C_CheckAndClearError(I2C_Type *base, uint32_t status);
+
+/*!
+ * @brief Master run transfer state machine to perform a byte of transfer.
+ *
+ * @param base I2C peripheral base address.
+ * @param handle pointer to i2c_master_handle_t structure which stores the transfer state
+ * @param isDone input param to get whether the thing is done, true is done
+ * @retval kStatus_Success No error found.
+ * @retval kStatus_I2C_ArbitrationLost Transfer error, arbitration lost.
+ * @retval kStatus_I2C_Nak Received Nak error.
+ * @retval kStatus_I2C_Timeout Transfer error, wait signal timeout.
+ */
+static status_t I2C_MasterTransferRunStateMachine(I2C_Type *base, i2c_master_handle_t *handle, bool *isDone);
+
+/*!
+ * @brief I2C common interrupt handler.
+ *
+ * @param base I2C peripheral base address.
+ * @param handle pointer to i2c_master_handle_t structure which stores the transfer state
+ */
+static void I2C_TransferCommonIRQHandler(I2C_Type *base, void *handle);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+
+/*! @brief Pointers to i2c bases for each instance. */
+I2C_Type *const s_i2cBases[] = I2C_BASE_PTRS;
+
+/*! @brief Pointers to i2c handles for each instance. */
+static void *s_i2cHandle[FSL_FEATURE_SOC_I2C_COUNT] = {NULL};
+
+/*! @brief SCL clock divider used to calculate baudrate. */
+static const uint16_t s_i2cDividerTable[] = {
+ 20, 22, 24, 26, 28, 30, 34, 40, 28, 32, 36, 40, 44, 48, 56, 68,
+ 48, 56, 64, 72, 80, 88, 104, 128, 80, 96, 112, 128, 144, 160, 192, 240,
+ 160, 192, 224, 256, 288, 320, 384, 480, 320, 384, 448, 512, 576, 640, 768, 960,
+ 640, 768, 896, 1024, 1152, 1280, 1536, 1920, 1280, 1536, 1792, 2048, 2304, 2560, 3072, 3840};
+
+/*! @brief Pointers to i2c IRQ number for each instance. */
+static const IRQn_Type s_i2cIrqs[] = I2C_IRQS;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/*! @brief Pointers to i2c clocks for each instance. */
+static const clock_ip_name_t s_i2cClocks[] = I2C_CLOCKS;
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/*! @brief Pointer to master IRQ handler for each instance. */
+static i2c_isr_t s_i2cMasterIsr;
+
+/*! @brief Pointer to slave IRQ handler for each instance. */
+static i2c_isr_t s_i2cSlaveIsr;
+
+/*******************************************************************************
+ * Codes
+ ******************************************************************************/
+
+uint32_t I2C_GetInstance(I2C_Type *base)
+{
+ uint32_t instance;
+
+ /* Find the instance index from base address mappings. */
+ for (instance = 0; instance < ARRAY_SIZE(s_i2cBases); instance++)
+ {
+ if (s_i2cBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < ARRAY_SIZE(s_i2cBases));
+
+ return instance;
+}
+
+static void I2C_SetHoldTime(I2C_Type *base, uint32_t sclStopHoldTime_ns, uint32_t sourceClock_Hz)
+{
+ uint32_t multiplier;
+ uint32_t computedSclHoldTime;
+ uint32_t absError;
+ uint32_t bestError = UINT32_MAX;
+ uint32_t bestMult = 0u;
+ uint32_t bestIcr = 0u;
+ uint8_t mult;
+ uint8_t i;
+
+ /* Search for the settings with the lowest error. Mult is the MULT field of the I2C_F register,
+ * and ranges from 0-2. It selects the multiplier factor for the divider. */
+ /* SDA hold time = bus period (s) * mul * SDA hold value. */
+ /* SCL start hold time = bus period (s) * mul * SCL start hold value. */
+ /* SCL stop hold time = bus period (s) * mul * SCL stop hold value. */
+
+ for (mult = 0u; (mult <= 2u) && (bestError != 0); ++mult)
+ {
+ multiplier = 1u << mult;
+
+ /* Scan table to find best match. */
+ for (i = 0u; i < sizeof(s_i2cDividerTable) / sizeof(s_i2cDividerTable[0]); ++i)
+ {
+ /* Assume SCL hold(stop) value = s_i2cDividerTable[i]/2. */
+ computedSclHoldTime = ((multiplier * s_i2cDividerTable[i]) * 500000U) / (sourceClock_Hz / 1000U);
+ absError = sclStopHoldTime_ns > computedSclHoldTime ? (sclStopHoldTime_ns - computedSclHoldTime) :
+ (computedSclHoldTime - sclStopHoldTime_ns);
+
+ if (absError < bestError)
+ {
+ bestMult = mult;
+ bestIcr = i;
+ bestError = absError;
+
+ /* If the error is 0, then we can stop searching because we won't find a better match. */
+ if (absError == 0)
+ {
+ break;
+ }
+ }
+ }
+ }
+
+ /* Set frequency register based on best settings. */
+ base->F = I2C_F_MULT(bestMult) | I2C_F_ICR(bestIcr);
+}
+
+static status_t I2C_InitTransferStateMachine(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)
+{
+ status_t result = kStatus_Success;
+ i2c_direction_t direction = xfer->direction;
+
+ /* Initialize the handle transfer information. */
+ handle->transfer = *xfer;
+
+ /* Save total transfer size. */
+ handle->transferSize = xfer->dataSize;
+
+ /* Initial transfer state. */
+ if (handle->transfer.subaddressSize > 0)
+ {
+ if (xfer->direction == kI2C_Read)
+ {
+ direction = kI2C_Write;
+ }
+ }
+
+ handle->state = kCheckAddressState;
+
+ /* Clear all status before transfer. */
+ I2C_MasterClearStatusFlags(base, kClearFlags);
+
+ /* Handle no start option. */
+ if (handle->transfer.flags & kI2C_TransferNoStartFlag)
+ {
+ /* No need to send start flag, directly go to send command or data */
+ if (handle->transfer.subaddressSize > 0)
+ {
+ handle->state = kSendCommandState;
+ }
+ else
+ {
+ if (direction == kI2C_Write)
+ {
+ /* Next state, send data. */
+ handle->state = kSendDataState;
+ }
+ else
+ {
+ /* Only support write with no stop signal. */
+ return kStatus_InvalidArgument;
+ }
+ }
+
+ /* Wait for TCF bit and manually trigger tx interrupt. */
+ while (!(base->S & kI2C_TransferCompleteFlag))
+ {
+ }
+ I2C_MasterTransferHandleIRQ(base, handle);
+ }
+ /* If repeated start is requested, send repeated start. */
+ else if (handle->transfer.flags & kI2C_TransferRepeatedStartFlag)
+ {
+ result = I2C_MasterRepeatedStart(base, handle->transfer.slaveAddress, direction);
+ }
+ else /* For normal transfer, send start. */
+ {
+ result = I2C_MasterStart(base, handle->transfer.slaveAddress, direction);
+ }
+
+ return result;
+}
+
+static status_t I2C_CheckAndClearError(I2C_Type *base, uint32_t status)
+{
+ status_t result = kStatus_Success;
+
+ /* Check arbitration lost. */
+ if (status & kI2C_ArbitrationLostFlag)
+ {
+ /* Clear arbitration lost flag. */
+ base->S = kI2C_ArbitrationLostFlag;
+ result = kStatus_I2C_ArbitrationLost;
+ }
+ /* Check NAK */
+ else if (status & kI2C_ReceiveNakFlag)
+ {
+ result = kStatus_I2C_Nak;
+ }
+ else
+ {
+ }
+
+ return result;
+}
+
+static status_t I2C_MasterTransferRunStateMachine(I2C_Type *base, i2c_master_handle_t *handle, bool *isDone)
+{
+ status_t result = kStatus_Success;
+ uint32_t statusFlags = base->S;
+ *isDone = false;
+ volatile uint8_t dummy = 0;
+ bool ignoreNak = ((handle->state == kSendDataState) && (handle->transfer.dataSize == 0U)) ||
+ ((handle->state == kReceiveDataState) && (handle->transfer.dataSize == 1U));
+
+ /* Add this to avoid build warning. */
+ dummy++;
+
+ /* Check & clear error flags. */
+ result = I2C_CheckAndClearError(base, statusFlags);
+
+ /* Ignore Nak when it's appeared for last byte. */
+ if ((result == kStatus_I2C_Nak) && ignoreNak)
+ {
+ result = kStatus_Success;
+ }
+
+ /* Handle Check address state to check the slave address is Acked in slave
+ probe application. */
+ if (handle->state == kCheckAddressState)
+ {
+ if (statusFlags & kI2C_ReceiveNakFlag)
+ {
+ result = kStatus_I2C_Addr_Nak;
+ }
+ else
+ {
+ if (handle->transfer.subaddressSize > 0)
+ {
+ handle->state = kSendCommandState;
+ }
+ else
+ {
+ if (handle->transfer.direction == kI2C_Write)
+ {
+ /* Next state, send data. */
+ handle->state = kSendDataState;
+ }
+ else
+ {
+ /* Next state, receive data begin. */
+ handle->state = kReceiveDataBeginState;
+ }
+ }
+ }
+ }
+
+ if (result)
+ {
+ return result;
+ }
+
+ /* Run state machine. */
+ switch (handle->state)
+ {
+ /* Send I2C command. */
+ case kSendCommandState:
+ if (handle->transfer.subaddressSize)
+ {
+ handle->transfer.subaddressSize--;
+ base->D = ((handle->transfer.subaddress) >> (8 * handle->transfer.subaddressSize));
+ }
+ else
+ {
+ if (handle->transfer.direction == kI2C_Write)
+ {
+ /* Next state, send data. */
+ handle->state = kSendDataState;
+
+ /* Send first byte of data. */
+ if (handle->transfer.dataSize > 0)
+ {
+ base->D = *handle->transfer.data;
+ handle->transfer.data++;
+ handle->transfer.dataSize--;
+ }
+ }
+ else
+ {
+ /* Send repeated start and slave address. */
+ result = I2C_MasterRepeatedStart(base, handle->transfer.slaveAddress, kI2C_Read);
+
+ /* Next state, receive data begin. */
+ handle->state = kReceiveDataBeginState;
+ }
+ }
+ break;
+
+ /* Send I2C data. */
+ case kSendDataState:
+ /* Send one byte of data. */
+ if (handle->transfer.dataSize > 0)
+ {
+ base->D = *handle->transfer.data;
+ handle->transfer.data++;
+ handle->transfer.dataSize--;
+ }
+ else
+ {
+ *isDone = true;
+ }
+ break;
+
+ /* Start I2C data receive. */
+ case kReceiveDataBeginState:
+ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+
+ /* Send nak at the last receive byte. */
+ if (handle->transfer.dataSize == 1)
+ {
+ base->C1 |= I2C_C1_TXAK_MASK;
+ }
+
+ /* Read dummy to release the bus. */
+ dummy = base->D;
+
+ /* Next state, receive data. */
+ handle->state = kReceiveDataState;
+ break;
+
+ /* Receive I2C data. */
+ case kReceiveDataState:
+ /* Receive one byte of data. */
+ if (handle->transfer.dataSize--)
+ {
+ if (handle->transfer.dataSize == 0)
+ {
+ *isDone = true;
+
+ /* Send stop if kI2C_TransferNoStop is not asserted. */
+ if (!(handle->transfer.flags & kI2C_TransferNoStopFlag))
+ {
+ result = I2C_MasterStop(base);
+ }
+ else
+ {
+ base->C1 |= I2C_C1_TX_MASK;
+ }
+ }
+
+ /* Send NAK at the last receive byte. */
+ if (handle->transfer.dataSize == 1)
+ {
+ base->C1 |= I2C_C1_TXAK_MASK;
+ }
+
+ /* Read the data byte into the transfer buffer. */
+ *handle->transfer.data = base->D;
+ handle->transfer.data++;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ return result;
+}
+
+static void I2C_TransferCommonIRQHandler(I2C_Type *base, void *handle)
+{
+ /* Check if master interrupt. */
+ if ((base->S & kI2C_ArbitrationLostFlag) || (base->C1 & I2C_C1_MST_MASK))
+ {
+ s_i2cMasterIsr(base, handle);
+ }
+ else
+ {
+ s_i2cSlaveIsr(base, handle);
+ }
+ __DSB();
+}
+
+void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
+{
+ assert(masterConfig && srcClock_Hz);
+
+ /* Temporary register for filter read. */
+ uint8_t fltReg;
+#if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE
+ uint8_t s2Reg;
+#endif
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Enable I2C clock. */
+ CLOCK_EnableClock(s_i2cClocks[I2C_GetInstance(base)]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+ /* Reset the module. */
+ base->A1 = 0;
+ base->F = 0;
+ base->C1 = 0;
+ base->S = 0xFFU;
+ base->C2 = 0;
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ base->FLT = 0x50U;
+#elif defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT
+ base->FLT = 0x40U;
+#endif
+ base->RA = 0;
+
+ /* Disable I2C prior to configuring it. */
+ base->C1 &= ~(I2C_C1_IICEN_MASK);
+
+ /* Clear all flags. */
+ I2C_MasterClearStatusFlags(base, kClearFlags);
+
+ /* Configure baud rate. */
+ I2C_MasterSetBaudRate(base, masterConfig->baudRate_Bps, srcClock_Hz);
+
+ /* Read out the FLT register. */
+ fltReg = base->FLT;
+
+#if defined(FSL_FEATURE_I2C_HAS_STOP_HOLD_OFF) && FSL_FEATURE_I2C_HAS_STOP_HOLD_OFF
+ /* Configure the stop / hold enable. */
+ fltReg &= ~(I2C_FLT_SHEN_MASK);
+ fltReg |= I2C_FLT_SHEN(masterConfig->enableStopHold);
+#endif
+
+ /* Configure the glitch filter value. */
+ fltReg &= ~(I2C_FLT_FLT_MASK);
+ fltReg |= I2C_FLT_FLT(masterConfig->glitchFilterWidth);
+
+ /* Write the register value back to the filter register. */
+ base->FLT = fltReg;
+
+/* Enable/Disable double buffering. */
+#if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE
+ s2Reg = base->S2 & (~I2C_S2_DFEN_MASK);
+ base->S2 = s2Reg | I2C_S2_DFEN(masterConfig->enableDoubleBuffering);
+#endif
+
+ /* Enable the I2C peripheral based on the configuration. */
+ base->C1 = I2C_C1_IICEN(masterConfig->enableMaster);
+}
+
+void I2C_MasterDeinit(I2C_Type *base)
+{
+ /* Disable I2C module. */
+ I2C_Enable(base, false);
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Disable I2C clock. */
+ CLOCK_DisableClock(s_i2cClocks[I2C_GetInstance(base)]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
+{
+ assert(masterConfig);
+
+ /* Default baud rate at 100kbps. */
+ masterConfig->baudRate_Bps = 100000U;
+
+/* Default stop hold enable is disabled. */
+#if defined(FSL_FEATURE_I2C_HAS_STOP_HOLD_OFF) && FSL_FEATURE_I2C_HAS_STOP_HOLD_OFF
+ masterConfig->enableStopHold = false;
+#endif
+
+ /* Default glitch filter value is no filter. */
+ masterConfig->glitchFilterWidth = 0U;
+
+/* Default enable double buffering. */
+#if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE
+ masterConfig->enableDoubleBuffering = true;
+#endif
+
+ /* Enable the I2C peripheral. */
+ masterConfig->enableMaster = true;
+}
+
+void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask)
+{
+#ifdef I2C_HAS_STOP_DETECT
+ uint8_t fltReg;
+#endif
+
+ if (mask & kI2C_GlobalInterruptEnable)
+ {
+ base->C1 |= I2C_C1_IICIE_MASK;
+ }
+
+#if defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT
+ if (mask & kI2C_StopDetectInterruptEnable)
+ {
+ fltReg = base->FLT;
+
+ /* Keep STOPF flag. */
+ fltReg &= ~I2C_FLT_STOPF_MASK;
+
+ /* Stop detect enable. */
+ fltReg |= I2C_FLT_STOPIE_MASK;
+ base->FLT = fltReg;
+ }
+#endif /* FSL_FEATURE_I2C_HAS_STOP_DETECT */
+
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ if (mask & kI2C_StartStopDetectInterruptEnable)
+ {
+ fltReg = base->FLT;
+
+ /* Keep STARTF and STOPF flags. */
+ fltReg &= ~(I2C_FLT_STOPF_MASK | I2C_FLT_STARTF_MASK);
+
+ /* Start and stop detect enable. */
+ fltReg |= I2C_FLT_SSIE_MASK;
+ base->FLT = fltReg;
+ }
+#endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */
+}
+
+void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask)
+{
+ if (mask & kI2C_GlobalInterruptEnable)
+ {
+ base->C1 &= ~I2C_C1_IICIE_MASK;
+ }
+
+#if defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT
+ if (mask & kI2C_StopDetectInterruptEnable)
+ {
+ base->FLT &= ~(I2C_FLT_STOPIE_MASK | I2C_FLT_STOPF_MASK);
+ }
+#endif /* FSL_FEATURE_I2C_HAS_STOP_DETECT */
+
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ if (mask & kI2C_StartStopDetectInterruptEnable)
+ {
+ base->FLT &= ~(I2C_FLT_SSIE_MASK | I2C_FLT_STOPF_MASK | I2C_FLT_STARTF_MASK);
+ }
+#endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */
+}
+
+void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
+{
+ uint32_t multiplier;
+ uint32_t computedRate;
+ uint32_t absError;
+ uint32_t bestError = UINT32_MAX;
+ uint32_t bestMult = 0u;
+ uint32_t bestIcr = 0u;
+ uint8_t mult;
+ uint8_t i;
+
+ /* Search for the settings with the lowest error. Mult is the MULT field of the I2C_F register,
+ * and ranges from 0-2. It selects the multiplier factor for the divider. */
+ for (mult = 0u; (mult <= 2u) && (bestError != 0); ++mult)
+ {
+ multiplier = 1u << mult;
+
+ /* Scan table to find best match. */
+ for (i = 0u; i < sizeof(s_i2cDividerTable) / sizeof(uint16_t); ++i)
+ {
+ computedRate = srcClock_Hz / (multiplier * s_i2cDividerTable[i]);
+ absError = baudRate_Bps > computedRate ? (baudRate_Bps - computedRate) : (computedRate - baudRate_Bps);
+
+ if (absError < bestError)
+ {
+ bestMult = mult;
+ bestIcr = i;
+ bestError = absError;
+
+ /* If the error is 0, then we can stop searching because we won't find a better match. */
+ if (absError == 0)
+ {
+ break;
+ }
+ }
+ }
+ }
+
+ /* Set frequency register based on best settings. */
+ base->F = I2C_F_MULT(bestMult) | I2C_F_ICR(bestIcr);
+}
+
+status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
+{
+ status_t result = kStatus_Success;
+ uint32_t statusFlags = I2C_MasterGetStatusFlags(base);
+
+ /* Return an error if the bus is already in use. */
+ if (statusFlags & kI2C_BusBusyFlag)
+ {
+ result = kStatus_I2C_Busy;
+ }
+ else
+ {
+ /* Send the START signal. */
+ base->C1 |= I2C_C1_MST_MASK | I2C_C1_TX_MASK;
+
+#if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+ while ((!(base->S2 & I2C_S2_EMPTY_MASK)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ while (!(base->S2 & I2C_S2_EMPTY_MASK))
+ {
+ }
+#endif
+#endif /* FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING */
+
+ base->D = (((uint32_t)address) << 1U | ((direction == kI2C_Read) ? 1U : 0U));
+ }
+
+ return result;
+}
+
+status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
+{
+ status_t result = kStatus_Success;
+ uint8_t savedMult;
+ uint32_t statusFlags = I2C_MasterGetStatusFlags(base);
+ uint8_t timeDelay = 6;
+
+ /* Return an error if the bus is already in use, but not by us. */
+ if ((statusFlags & kI2C_BusBusyFlag) && ((base->C1 & I2C_C1_MST_MASK) == 0))
+ {
+ result = kStatus_I2C_Busy;
+ }
+ else
+ {
+ savedMult = base->F;
+ base->F = savedMult & (~I2C_F_MULT_MASK);
+
+ /* We are already in a transfer, so send a repeated start. */
+ base->C1 |= I2C_C1_RSTA_MASK | I2C_C1_TX_MASK;
+
+ /* Restore the multiplier factor. */
+ base->F = savedMult;
+
+ /* Add some delay to wait the Re-Start signal. */
+ while (timeDelay--)
+ {
+ __NOP();
+ }
+
+#if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+ while ((!(base->S2 & I2C_S2_EMPTY_MASK)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ while (!(base->S2 & I2C_S2_EMPTY_MASK))
+ {
+ }
+#endif
+#endif /* FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING */
+
+ base->D = (((uint32_t)address) << 1U | ((direction == kI2C_Read) ? 1U : 0U));
+ }
+
+ return result;
+}
+
+status_t I2C_MasterStop(I2C_Type *base)
+{
+ status_t result = kStatus_Success;
+
+ /* Issue the STOP command on the bus. */
+ base->C1 &= ~(I2C_C1_MST_MASK | I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until bus not busy. */
+ while ((base->S & kI2C_BusBusyFlag) && (--waitTimes))
+ {
+ }
+
+ if (waitTimes == 0)
+ {
+ result = kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (base->S & kI2C_BusBusyFlag)
+ {
+ }
+#endif
+
+ return result;
+}
+
+uint32_t I2C_MasterGetStatusFlags(I2C_Type *base)
+{
+ uint32_t statusFlags = base->S;
+
+#ifdef I2C_HAS_STOP_DETECT
+ /* Look up the STOPF bit from the filter register. */
+ if (base->FLT & I2C_FLT_STOPF_MASK)
+ {
+ statusFlags |= kI2C_StopDetectFlag;
+ }
+#endif
+
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ /* Look up the STARTF bit from the filter register. */
+ if (base->FLT & I2C_FLT_STARTF_MASK)
+ {
+ statusFlags |= kI2C_StartDetectFlag;
+ }
+#endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */
+
+ return statusFlags;
+}
+
+status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t flags)
+{
+ status_t result = kStatus_Success;
+ uint8_t statusFlags = 0;
+
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until the data register is ready for transmit. */
+ while ((!(base->S & kI2C_TransferCompleteFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until the data register is ready for transmit. */
+ while (!(base->S & kI2C_TransferCompleteFlag))
+ {
+ }
+#endif
+
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Setup the I2C peripheral to transmit data. */
+ base->C1 |= I2C_C1_TX_MASK;
+
+ while (txSize--)
+ {
+ /* Send a byte of data. */
+ base->D = *txBuff++;
+
+#if I2C_WAIT_TIMEOUT
+ waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+ statusFlags = base->S;
+
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Check if arbitration lost or no acknowledgement (NAK), return failure status. */
+ if (statusFlags & kI2C_ArbitrationLostFlag)
+ {
+ base->S = kI2C_ArbitrationLostFlag;
+ result = kStatus_I2C_ArbitrationLost;
+ }
+
+ if ((statusFlags & kI2C_ReceiveNakFlag) && txSize)
+ {
+ base->S = kI2C_ReceiveNakFlag;
+ result = kStatus_I2C_Nak;
+ }
+
+ if (result != kStatus_Success)
+ {
+ /* Breaking out of the send loop. */
+ break;
+ }
+ }
+
+ if (((result == kStatus_Success) && (!(flags & kI2C_TransferNoStopFlag))) || (result == kStatus_I2C_Nak))
+ {
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Send stop. */
+ result = I2C_MasterStop(base);
+ }
+
+ return result;
+}
+
+status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)
+{
+ status_t result = kStatus_Success;
+ volatile uint8_t dummy = 0;
+
+ /* Add this to avoid build warning. */
+ dummy++;
+
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until the data register is ready for transmit. */
+ while ((!(base->S & kI2C_TransferCompleteFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until the data register is ready for transmit. */
+ while (!(base->S & kI2C_TransferCompleteFlag))
+ {
+ }
+#endif
+
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Setup the I2C peripheral to receive data. */
+ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+
+ /* If rxSize equals 1, configure to send NAK. */
+ if (rxSize == 1)
+ {
+ /* Issue NACK on read. */
+ base->C1 |= I2C_C1_TXAK_MASK;
+ }
+
+ /* Do dummy read. */
+ dummy = base->D;
+
+ while ((rxSize--))
+ {
+#if I2C_WAIT_TIMEOUT
+ waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Single byte use case. */
+ if (rxSize == 0)
+ {
+ if (!(flags & kI2C_TransferNoStopFlag))
+ {
+ /* Issue STOP command before reading last byte. */
+ result = I2C_MasterStop(base);
+ }
+ else
+ {
+ /* Change direction to Tx to avoid extra clocks. */
+ base->C1 |= I2C_C1_TX_MASK;
+ }
+ }
+
+ if (rxSize == 1)
+ {
+ /* Issue NACK on read. */
+ base->C1 |= I2C_C1_TXAK_MASK;
+ }
+
+ /* Read from the data register. */
+ *rxBuff++ = base->D;
+ }
+
+ return result;
+}
+
+status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
+{
+ assert(xfer);
+
+ i2c_direction_t direction = xfer->direction;
+ status_t result = kStatus_Success;
+
+ /* Clear all status before transfer. */
+ I2C_MasterClearStatusFlags(base, kClearFlags);
+
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until the data register is ready for transmit. */
+ while ((!(base->S & kI2C_TransferCompleteFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until the data register is ready for transmit. */
+ while (!(base->S & kI2C_TransferCompleteFlag))
+ {
+ }
+#endif
+
+ /* Change to send write address when it's a read operation with command. */
+ if ((xfer->subaddressSize > 0) && (xfer->direction == kI2C_Read))
+ {
+ direction = kI2C_Write;
+ }
+
+ /* Handle no start option, only support write with no start signal. */
+ if (xfer->flags & kI2C_TransferNoStartFlag)
+ {
+ if (direction == kI2C_Read)
+ {
+ return kStatus_InvalidArgument;
+ }
+ }
+ /* If repeated start is requested, send repeated start. */
+ else if (xfer->flags & kI2C_TransferRepeatedStartFlag)
+ {
+ result = I2C_MasterRepeatedStart(base, xfer->slaveAddress, direction);
+ }
+ else /* For normal transfer, send start. */
+ {
+ result = I2C_MasterStart(base, xfer->slaveAddress, direction);
+ }
+
+ if (!(xfer->flags & kI2C_TransferNoStartFlag))
+ {
+ /* Return if error. */
+ if (result)
+ {
+ return result;
+ }
+
+#if I2C_WAIT_TIMEOUT
+ waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+ /* Check if there's transfer error. */
+ result = I2C_CheckAndClearError(base, base->S);
+
+ /* Return if error. */
+ if (result)
+ {
+ if (result == kStatus_I2C_Nak)
+ {
+ result = kStatus_I2C_Addr_Nak;
+
+ I2C_MasterStop(base);
+ }
+
+ return result;
+ }
+ }
+
+ /* Send subaddress. */
+ if (xfer->subaddressSize)
+ {
+ do
+ {
+ /* Clear interrupt pending flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ xfer->subaddressSize--;
+ base->D = ((xfer->subaddress) >> (8 * xfer->subaddressSize));
+
+#if I2C_WAIT_TIMEOUT
+ waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+
+ /* Check if there's transfer error. */
+ result = I2C_CheckAndClearError(base, base->S);
+
+ if (result)
+ {
+ if (result == kStatus_I2C_Nak)
+ {
+ I2C_MasterStop(base);
+ }
+
+ return result;
+ }
+
+ } while (xfer->subaddressSize > 0);
+
+ if (xfer->direction == kI2C_Read)
+ {
+ /* Clear pending flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Send repeated start and slave address. */
+ result = I2C_MasterRepeatedStart(base, xfer->slaveAddress, kI2C_Read);
+
+ /* Return if error. */
+ if (result)
+ {
+ return result;
+ }
+
+#if I2C_WAIT_TIMEOUT
+ waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+
+ /* Check if there's transfer error. */
+ result = I2C_CheckAndClearError(base, base->S);
+
+ if (result)
+ {
+ if (result == kStatus_I2C_Nak)
+ {
+ result = kStatus_I2C_Addr_Nak;
+
+ I2C_MasterStop(base);
+ }
+
+ return result;
+ }
+ }
+ }
+
+ /* Transmit data. */
+ if ((xfer->direction == kI2C_Write) && (xfer->dataSize > 0))
+ {
+ /* Send Data. */
+ result = I2C_MasterWriteBlocking(base, xfer->data, xfer->dataSize, xfer->flags);
+ }
+
+ /* Receive Data. */
+ if ((xfer->direction == kI2C_Read) && (xfer->dataSize > 0))
+ {
+ result = I2C_MasterReadBlocking(base, xfer->data, xfer->dataSize, xfer->flags);
+ }
+
+ return result;
+}
+
+void I2C_MasterTransferCreateHandle(I2C_Type *base,
+ i2c_master_handle_t *handle,
+ i2c_master_transfer_callback_t callback,
+ void *userData)
+{
+ assert(handle);
+
+ uint32_t instance = I2C_GetInstance(base);
+
+ /* Zero handle. */
+ memset(handle, 0, sizeof(*handle));
+
+ /* Set callback and userData. */
+ handle->completionCallback = callback;
+ handle->userData = userData;
+
+ /* Save the context in global variables to support the double weak mechanism. */
+ s_i2cHandle[instance] = handle;
+
+ /* Save master interrupt handler. */
+ s_i2cMasterIsr = I2C_MasterTransferHandleIRQ;
+
+ /* Enable NVIC interrupt. */
+ EnableIRQ(s_i2cIrqs[instance]);
+}
+
+status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)
+{
+ assert(handle);
+ assert(xfer);
+
+ status_t result = kStatus_Success;
+
+ /* Check if the I2C bus is idle - if not return busy status. */
+ if (handle->state != kIdleState)
+ {
+ result = kStatus_I2C_Busy;
+ }
+ else
+ {
+ /* Start up the master transfer state machine. */
+ result = I2C_InitTransferStateMachine(base, handle, xfer);
+
+ if (result == kStatus_Success)
+ {
+ /* Enable the I2C interrupts. */
+ I2C_EnableInterrupts(base, kI2C_GlobalInterruptEnable);
+ }
+ }
+
+ return result;
+}
+
+status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
+{
+ assert(handle);
+
+ volatile uint8_t dummy = 0;
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+#endif
+
+ /* Add this to avoid build warning. */
+ dummy++;
+
+ /* Disable interrupt. */
+ I2C_DisableInterrupts(base, kI2C_GlobalInterruptEnable);
+
+ /* Reset the state to idle. */
+ handle->state = kIdleState;
+
+ /* If the bus is already in use, but not by us */
+ if (!(base->C1 & I2C_C1_MST_MASK))
+ {
+ return kStatus_I2C_Busy;
+ }
+
+ /* Send STOP signal. */
+ if (handle->transfer.direction == kI2C_Read)
+ {
+ base->C1 |= I2C_C1_TXAK_MASK;
+
+#if I2C_WAIT_TIMEOUT
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+ base->S = kI2C_IntPendingFlag;
+
+ base->C1 &= ~(I2C_C1_MST_MASK | I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+ dummy = base->D;
+ }
+ else
+ {
+#if I2C_WAIT_TIMEOUT
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+ base->S = kI2C_IntPendingFlag;
+ base->C1 &= ~(I2C_C1_MST_MASK | I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+ }
+
+ return kStatus_Success;
+}
+
+status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)
+{
+ assert(handle);
+
+ if (!count)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ *count = handle->transferSize - handle->transfer.dataSize;
+
+ return kStatus_Success;
+}
+
+void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
+{
+ assert(i2cHandle);
+
+ i2c_master_handle_t *handle = (i2c_master_handle_t *)i2cHandle;
+ status_t result = kStatus_Success;
+ bool isDone;
+
+ /* Clear the interrupt flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Check transfer complete flag. */
+ result = I2C_MasterTransferRunStateMachine(base, handle, &isDone);
+
+ if (isDone || result)
+ {
+ /* Send stop command if transfer done or received Nak. */
+ if ((!(handle->transfer.flags & kI2C_TransferNoStopFlag)) || (result == kStatus_I2C_Nak) ||
+ (result == kStatus_I2C_Addr_Nak))
+ {
+ /* Ensure stop command is a need. */
+ if ((base->C1 & I2C_C1_MST_MASK))
+ {
+ if (I2C_MasterStop(base) != kStatus_Success)
+ {
+ result = kStatus_I2C_Timeout;
+ }
+ }
+ }
+
+ /* Restore handle to idle state. */
+ handle->state = kIdleState;
+
+ /* Disable interrupt. */
+ I2C_DisableInterrupts(base, kI2C_GlobalInterruptEnable);
+
+ /* Call the callback function after the function has completed. */
+ if (handle->completionCallback)
+ {
+ handle->completionCallback(base, handle, result, handle->userData);
+ }
+ }
+}
+
+void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)
+{
+ assert(slaveConfig);
+
+ uint8_t tmpReg;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ CLOCK_EnableClock(s_i2cClocks[I2C_GetInstance(base)]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+ /* Reset the module. */
+ base->A1 = 0;
+ base->F = 0;
+ base->C1 = 0;
+ base->S = 0xFFU;
+ base->C2 = 0;
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ base->FLT = 0x50U;
+#elif defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT
+ base->FLT = 0x40U;
+#endif
+ base->RA = 0;
+
+ /* Configure addressing mode. */
+ switch (slaveConfig->addressingMode)
+ {
+ case kI2C_Address7bit:
+ base->A1 = ((uint32_t)(slaveConfig->slaveAddress)) << 1U;
+ break;
+
+ case kI2C_RangeMatch:
+ assert(slaveConfig->slaveAddress < slaveConfig->upperAddress);
+ base->A1 = ((uint32_t)(slaveConfig->slaveAddress)) << 1U;
+ base->RA = ((uint32_t)(slaveConfig->upperAddress)) << 1U;
+ base->C2 |= I2C_C2_RMEN_MASK;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Configure low power wake up feature. */
+ tmpReg = base->C1;
+ tmpReg &= ~I2C_C1_WUEN_MASK;
+ base->C1 = tmpReg | I2C_C1_WUEN(slaveConfig->enableWakeUp) | I2C_C1_IICEN(slaveConfig->enableSlave);
+
+ /* Configure general call & baud rate control. */
+ tmpReg = base->C2;
+ tmpReg &= ~(I2C_C2_SBRC_MASK | I2C_C2_GCAEN_MASK);
+ tmpReg |= I2C_C2_SBRC(slaveConfig->enableBaudRateCtl) | I2C_C2_GCAEN(slaveConfig->enableGeneralCall);
+ base->C2 = tmpReg;
+
+/* Enable/Disable double buffering. */
+#if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE
+ tmpReg = base->S2 & (~I2C_S2_DFEN_MASK);
+ base->S2 = tmpReg | I2C_S2_DFEN(slaveConfig->enableDoubleBuffering);
+#endif
+
+ /* Set hold time. */
+ I2C_SetHoldTime(base, slaveConfig->sclStopHoldTime_ns, srcClock_Hz);
+}
+
+void I2C_SlaveDeinit(I2C_Type *base)
+{
+ /* Disable I2C module. */
+ I2C_Enable(base, false);
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Disable I2C clock. */
+ CLOCK_DisableClock(s_i2cClocks[I2C_GetInstance(base)]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
+{
+ assert(slaveConfig);
+
+ /* By default slave is addressed with 7-bit address. */
+ slaveConfig->addressingMode = kI2C_Address7bit;
+
+ /* General call mode is disabled by default. */
+ slaveConfig->enableGeneralCall = false;
+
+ /* Slave address match waking up MCU from low power mode is disabled. */
+ slaveConfig->enableWakeUp = false;
+
+ /* Independent slave mode baud rate at maximum frequency is disabled. */
+ slaveConfig->enableBaudRateCtl = false;
+
+/* Default enable double buffering. */
+#if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE
+ slaveConfig->enableDoubleBuffering = true;
+#endif
+
+ /* Set default SCL stop hold time to 4us which is minimum requirement in I2C spec. */
+ slaveConfig->sclStopHoldTime_ns = 4000;
+
+ /* Enable the I2C peripheral. */
+ slaveConfig->enableSlave = true;
+}
+
+status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
+{
+ status_t result = kStatus_Success;
+ volatile uint8_t dummy = 0;
+
+ /* Add this to avoid build warning. */
+ dummy++;
+
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ /* Check start flag. */
+ while (!(base->FLT & I2C_FLT_STARTF_MASK))
+ {
+ }
+ /* Clear STARTF flag. */
+ base->FLT |= I2C_FLT_STARTF_MASK;
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+#endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */
+
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_AddressMatchFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait for address match flag. */
+ while (!(base->S & kI2C_AddressMatchFlag))
+ {
+ }
+#endif
+ /* Read dummy to release bus. */
+ dummy = base->D;
+
+ result = I2C_MasterWriteBlocking(base, txBuff, txSize, kI2C_TransferDefaultFlag);
+
+ /* Switch to receive mode. */
+ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+
+ /* Read dummy to release bus. */
+ dummy = base->D;
+
+ return result;
+}
+
+status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
+{
+ status_t result = kStatus_Success;
+ volatile uint8_t dummy = 0;
+
+ /* Add this to avoid build warning. */
+ dummy++;
+
+/* Wait until address match. */
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ /* Check start flag. */
+ while (!(base->FLT & I2C_FLT_STARTF_MASK))
+ {
+ }
+ /* Clear STARTF flag. */
+ base->FLT |= I2C_FLT_STARTF_MASK;
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+#endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */
+
+#if I2C_WAIT_TIMEOUT
+ uint32_t waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait for address match and int pending flag. */
+ while ((!(base->S & kI2C_AddressMatchFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+
+ waitTimes = I2C_WAIT_TIMEOUT;
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait for address match and int pending flag. */
+ while (!(base->S & kI2C_AddressMatchFlag))
+ {
+ }
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+
+ /* Read dummy to release bus. */
+ dummy = base->D;
+
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Setup the I2C peripheral to receive data. */
+ base->C1 &= ~(I2C_C1_TX_MASK);
+
+ while (rxSize--)
+ {
+#if I2C_WAIT_TIMEOUT
+ waitTimes = I2C_WAIT_TIMEOUT;
+ /* Wait until data transfer complete. */
+ while ((!(base->S & kI2C_IntPendingFlag)) && (--waitTimes))
+ {
+ }
+ if (waitTimes == 0)
+ {
+ return kStatus_I2C_Timeout;
+ }
+#else
+ /* Wait until data transfer complete. */
+ while (!(base->S & kI2C_IntPendingFlag))
+ {
+ }
+#endif
+ /* Clear the IICIF flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Read from the data register. */
+ *rxBuff++ = base->D;
+ }
+
+ return result;
+}
+
+void I2C_SlaveTransferCreateHandle(I2C_Type *base,
+ i2c_slave_handle_t *handle,
+ i2c_slave_transfer_callback_t callback,
+ void *userData)
+{
+ assert(handle);
+
+ uint32_t instance = I2C_GetInstance(base);
+
+ /* Zero handle. */
+ memset(handle, 0, sizeof(*handle));
+
+ /* Set callback and userData. */
+ handle->callback = callback;
+ handle->userData = userData;
+
+ /* Save the context in global variables to support the double weak mechanism. */
+ s_i2cHandle[instance] = handle;
+
+ /* Save slave interrupt handler. */
+ s_i2cSlaveIsr = I2C_SlaveTransferHandleIRQ;
+
+ /* Enable NVIC interrupt. */
+ EnableIRQ(s_i2cIrqs[instance]);
+}
+
+status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)
+{
+ assert(handle);
+
+ /* Check if the I2C bus is idle - if not return busy status. */
+ if (handle->isBusy)
+ {
+ return kStatus_I2C_Busy;
+ }
+ else
+ {
+ /* Disable LPI2C IRQ sources while we configure stuff. */
+ I2C_DisableInterrupts(base, kIrqFlags);
+
+ /* Clear transfer in handle. */
+ memset(&handle->transfer, 0, sizeof(handle->transfer));
+
+ /* Record that we're busy. */
+ handle->isBusy = true;
+
+ /* Set up event mask. tx and rx are always enabled. */
+ handle->eventMask = eventMask | kI2C_SlaveTransmitEvent | kI2C_SlaveReceiveEvent | kI2C_SlaveGenaralcallEvent;
+
+ /* Clear all flags. */
+ I2C_SlaveClearStatusFlags(base, kClearFlags);
+
+ /* Enable I2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
+ I2C_EnableInterrupts(base, kIrqFlags);
+ }
+
+ return kStatus_Success;
+}
+
+void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
+{
+ assert(handle);
+
+ if (handle->isBusy)
+ {
+ /* Disable interrupts. */
+ I2C_DisableInterrupts(base, kIrqFlags);
+
+ /* Reset transfer info. */
+ memset(&handle->transfer, 0, sizeof(handle->transfer));
+
+ /* Reset the state to idle. */
+ handle->isBusy = false;
+ }
+}
+
+status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
+{
+ assert(handle);
+
+ if (!count)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Catch when there is not an active transfer. */
+ if (!handle->isBusy)
+ {
+ *count = 0;
+ return kStatus_NoTransferInProgress;
+ }
+
+ /* For an active transfer, just return the count from the handle. */
+ *count = handle->transfer.transferredCount;
+
+ return kStatus_Success;
+}
+
+void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
+{
+ assert(i2cHandle);
+
+ uint16_t status;
+ bool doTransmit = false;
+ i2c_slave_handle_t *handle = (i2c_slave_handle_t *)i2cHandle;
+ i2c_slave_transfer_t *xfer;
+ volatile uint8_t dummy = 0;
+
+ /* Add this to avoid build warning. */
+ dummy++;
+
+ status = I2C_SlaveGetStatusFlags(base);
+ xfer = &(handle->transfer);
+
+#ifdef I2C_HAS_STOP_DETECT
+ /* Check stop flag. */
+ if (status & kI2C_StopDetectFlag)
+ {
+ I2C_MasterClearStatusFlags(base, kI2C_StopDetectFlag);
+
+ /* Clear the interrupt flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Call slave callback if this is the STOP of the transfer. */
+ if (handle->isBusy)
+ {
+ xfer->event = kI2C_SlaveCompletionEvent;
+ xfer->completionStatus = kStatus_Success;
+ handle->isBusy = false;
+
+ if ((handle->eventMask & xfer->event) && (handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+ }
+
+ if (!(status & kI2C_AddressMatchFlag))
+ {
+ return;
+ }
+ }
+#endif /* I2C_HAS_STOP_DETECT */
+
+#if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT
+ /* Check start flag. */
+ if (status & kI2C_StartDetectFlag)
+ {
+ I2C_MasterClearStatusFlags(base, kI2C_StartDetectFlag);
+
+ /* Clear the interrupt flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ xfer->event = kI2C_SlaveStartEvent;
+
+ if ((handle->eventMask & xfer->event) && (handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+
+ if (!(status & kI2C_AddressMatchFlag))
+ {
+ return;
+ }
+ }
+#endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */
+
+ /* Clear the interrupt flag. */
+ base->S = kI2C_IntPendingFlag;
+
+ /* Check NAK */
+ if (status & kI2C_ReceiveNakFlag)
+ {
+ /* Set receive mode. */
+ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+
+ /* Read dummy. */
+ dummy = base->D;
+
+ if (handle->transfer.dataSize != 0)
+ {
+ xfer->event = kI2C_SlaveCompletionEvent;
+ xfer->completionStatus = kStatus_I2C_Nak;
+ handle->isBusy = false;
+
+ if ((handle->eventMask & xfer->event) && (handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+ }
+ else
+ {
+#ifndef I2C_HAS_STOP_DETECT
+ xfer->event = kI2C_SlaveCompletionEvent;
+ xfer->completionStatus = kStatus_Success;
+ handle->isBusy = false;
+
+ if ((handle->eventMask & xfer->event) && (handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+#endif /* !FSL_FEATURE_I2C_HAS_START_STOP_DETECT or !FSL_FEATURE_I2C_HAS_STOP_DETECT */
+ }
+ }
+ /* Check address match. */
+ else if (status & kI2C_AddressMatchFlag)
+ {
+ handle->isBusy = true;
+ xfer->event = kI2C_SlaveAddressMatchEvent;
+
+ /* Slave transmit, master reading from slave. */
+ if (status & kI2C_TransferDirectionFlag)
+ {
+ /* Change direction to send data. */
+ base->C1 |= I2C_C1_TX_MASK;
+
+ doTransmit = true;
+ }
+ else
+ {
+ /* Slave receive, master writing to slave. */
+ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+
+ /* Read dummy to release the bus. */
+ dummy = base->D;
+
+ if (dummy == 0)
+ {
+ xfer->event = kI2C_SlaveGenaralcallEvent;
+ }
+ }
+
+ if ((handle->eventMask & xfer->event) && (handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+ }
+ /* Check transfer complete flag. */
+ else if (status & kI2C_TransferCompleteFlag)
+ {
+ /* Slave transmit, master reading from slave. */
+ if (status & kI2C_TransferDirectionFlag)
+ {
+ doTransmit = true;
+ }
+ else
+ {
+ /* If we're out of data, invoke callback to get more. */
+ if ((!xfer->data) || (!xfer->dataSize))
+ {
+ xfer->event = kI2C_SlaveReceiveEvent;
+
+ if (handle->callback)
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+
+ /* Clear the transferred count now that we have a new buffer. */
+ xfer->transferredCount = 0;
+ }
+
+ /* Slave receive, master writing to slave. */
+ uint8_t data = base->D;
+
+ if (handle->transfer.dataSize)
+ {
+ /* Receive data. */
+ *handle->transfer.data++ = data;
+ handle->transfer.dataSize--;
+ xfer->transferredCount++;
+ if (!handle->transfer.dataSize)
+ {
+#ifndef I2C_HAS_STOP_DETECT
+ xfer->event = kI2C_SlaveCompletionEvent;
+ xfer->completionStatus = kStatus_Success;
+ handle->isBusy = false;
+
+ /* Proceed receive complete event. */
+ if ((handle->eventMask & xfer->event) && (handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+#endif /* !FSL_FEATURE_I2C_HAS_START_STOP_DETECT or !FSL_FEATURE_I2C_HAS_STOP_DETECT */
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Read dummy to release bus. */
+ dummy = base->D;
+ }
+
+ /* Send data if there is the need. */
+ if (doTransmit)
+ {
+ /* If we're out of data, invoke callback to get more. */
+ if ((!xfer->data) || (!xfer->dataSize))
+ {
+ xfer->event = kI2C_SlaveTransmitEvent;
+
+ if (handle->callback)
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+
+ /* Clear the transferred count now that we have a new buffer. */
+ xfer->transferredCount = 0;
+ }
+
+ if (handle->transfer.dataSize)
+ {
+ /* Send data. */
+ base->D = *handle->transfer.data++;
+ handle->transfer.dataSize--;
+ xfer->transferredCount++;
+ }
+ else
+ {
+ /* Switch to receive mode. */
+ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK);
+
+ /* Read dummy to release bus. */
+ dummy = base->D;
+
+#ifndef I2C_HAS_STOP_DETECT
+ xfer->event = kI2C_SlaveCompletionEvent;
+ xfer->completionStatus = kStatus_Success;
+ handle->isBusy = false;
+
+ /* Proceed txdone event. */
+ if ((handle->eventMask & xfer->event) && (handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+#endif /* !FSL_FEATURE_I2C_HAS_START_STOP_DETECT or !FSL_FEATURE_I2C_HAS_STOP_DETECT */
+ }
+ }
+}
+
+#if defined(I2C0)
+void I2C0_DriverIRQHandler(void)
+{
+ I2C_TransferCommonIRQHandler(I2C0, s_i2cHandle[0]);
+}
+#endif
+
+#if defined(I2C1)
+void I2C1_DriverIRQHandler(void)
+{
+ I2C_TransferCommonIRQHandler(I2C1, s_i2cHandle[1]);
+}
+#endif
+
+#if defined(I2C2)
+void I2C2_DriverIRQHandler(void)
+{
+ I2C_TransferCommonIRQHandler(I2C2, s_i2cHandle[2]);
+}
+#endif
+
+#if defined(I2C3)
+void I2C3_DriverIRQHandler(void)
+{
+ I2C_TransferCommonIRQHandler(I2C3, s_i2cHandle[3]);
+}
+#endif